BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 9687438)

  • 1. De novo synthesis of amino acids by the ruminal bacteria Prevotella bryantii B14, Selenomonas ruminantium HD4, and Streptococcus bovis ES1.
    Atasoglu C; Valdés C; Walker ND; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 1998 Aug; 64(8):2836-43. PubMed ID: 9687438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of peptides and amino acids on fermentation rate and de novo synthesis of amino acids by mixed micro-organisms from the sheep rumen.
    Atasoglu C; Valdés C; Newbold CJ; Wallace RJ
    Br J Nutr; 1999 Apr; 81(4):307-14. PubMed ID: 10999018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria.
    Ling JR; Armstead IP
    J Appl Bacteriol; 1995 Feb; 78(2):116-24. PubMed ID: 7698948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of amino nitrogen on the energetics of ruminal bacteria and its impact on energy spilling.
    Van Kessel JS; Russell JB
    J Dairy Sci; 1996 Jul; 79(7):1237-43. PubMed ID: 8872717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ammonia and amino acids on the growth and proteolytic activity of three species of rumen bacteria: Prevotella albensis, Butyrivibrio fibrisolvens, and Streptococcus bovis.
    Sales M; Lucas F; Blanchart G
    Curr Microbiol; 2000 Jun; 40(6):380-6. PubMed ID: 10827280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17.
    Atasoglu C; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2001 Jun; 67(6):2819-22. PubMed ID: 11375199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of dipeptidyl peptidase inhibitors on growth, peptidase activity, and ammonia production by ruminal microorganisms.
    Wang H; McKain N; Walker ND; Wallace RJ
    Curr Microbiol; 2004 Aug; 49(2):115-22. PubMed ID: 15297916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of thymol on ruminal microorganisms.
    Evans JD; Martin SA
    Curr Microbiol; 2000 Nov; 41(5):336-40. PubMed ID: 11014870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo synthesis of amino acids by the ruminal anaerobic fungi, Piromyces communis and Neocallimastix frontalis.
    Atasoglu C; Wallace RJ
    FEMS Microbiol Lett; 2002 Jul; 212(2):243-7. PubMed ID: 12113941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of nucleic acids by Selenomonas ruminantium and other ruminal bacteria.
    Cotta MA
    Appl Environ Microbiol; 1990 Dec; 56(12):3867-70. PubMed ID: 1707252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breakdown of peptides from a casein hydrolysate by rumen bacteria. Simultaneous study of enzyme activities and physicochemical parameters.
    Depardon N; Debroas D; Blanchart G
    Reprod Nutr Dev; 1996; 36(5):457-66. PubMed ID: 8987097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hydrophobicity of utilization of peptides by ruminal bacteria in vitro.
    Chen G; Strobel HJ; Russell JB; Sniffen CJ
    Appl Environ Microbiol; 1987 Sep; 53(9):2021-5. PubMed ID: 3674870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A defined medium for rumen bacteria and identification of strains impaired in de novo biosynthesis of certain amino acids.
    Nili N; Brooker JD
    Lett Appl Microbiol; 1995 Aug; 21(2):69-74. PubMed ID: 7639995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus.
    Chen GJ; Russell JB
    Appl Environ Microbiol; 1988 Nov; 54(11):2742-9. PubMed ID: 2975156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid changes in key ruminal microbial populations during the induction of and recovery from diet-induced milk fat depression in dairy cows.
    Rico DE; Preston SH; Risser JM; Harvatine KJ
    Br J Nutr; 2015 Aug; 114(3):358-67. PubMed ID: 26123320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of laidlomycin propionate and monensin on glucose utilization and nutrient transport by Streptococcus bovis and Selenomonas ruminantium.
    Wampler JL; Martin SA; Hill GM
    J Anim Sci; 1998 Oct; 76(10):2730-6. PubMed ID: 9814916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipopolysaccharide Stimulates the Growth of Bacteria That Contribute to Ruminal Acidosis.
    Dai X; Hackmann TJ; Lobo RR; Faciola AP
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of Prevotella bryantii 3C5 for modulation of the ruminal environment in an ovine model.
    Fraga M; Fernández S; Perelmuter K; Pomiés N; Cajarville C; Zunino P
    Braz J Microbiol; 2018 Nov; 49 Suppl 1(Suppl 1):101-106. PubMed ID: 30181051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms.
    Wallace RJ; Arthaud L; Newbold CJ
    Appl Environ Microbiol; 1994 Jun; 60(6):1762-7. PubMed ID: 8031077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.