These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 9687455)
1. Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt). Teske A; Ramsing NB; Habicht K; Fukui M; Küver J; Jørgensen BB; Cohen Y Appl Environ Microbiol; 1998 Aug; 64(8):2943-51. PubMed ID: 9687455 [TBL] [Abstract][Full Text] [Related]
2. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Teske A; Wawer C; Muyzer G; Ramsing NB Appl Environ Microbiol; 1996 Apr; 62(4):1405-15. PubMed ID: 8919802 [TBL] [Abstract][Full Text] [Related]
3. Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Wieringa EB; Overmann J; Cypionka H Environ Microbiol; 2000 Aug; 2(4):417-27. PubMed ID: 11234930 [TBL] [Abstract][Full Text] [Related]
4. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats. D'Amelio ED; Cohen Y; Des Marais DJ Arch Microbiol; 1987; 147():213-20. PubMed ID: 11542090 [TBL] [Abstract][Full Text] [Related]
5. Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat. Jonkers HM; Koh IO; Behrend P; Muyzer G; de Beer D Microb Ecol; 2005 Feb; 49(2):291-300. PubMed ID: 15965719 [TBL] [Abstract][Full Text] [Related]
6. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Habicht KS; Canfield DE Geochim Cosmochim Acta; 1997 Dec; 61(24):5351-61. PubMed ID: 11541664 [TBL] [Abstract][Full Text] [Related]
7. Deciphering the functional and structural complexity of the Solar Lake flat mat microbial benthic communities. Abdallah RZ; Elbehery AHA; Ahmed SF; Ouf A; Malash MN; Liesack W; Siam R mSystems; 2024 Jun; 9(6):e0009524. PubMed ID: 38727215 [TBL] [Abstract][Full Text] [Related]
8. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Ravenschlag K; Sahm K; Knoblauch C; Jørgensen BB; Amann R Appl Environ Microbiol; 2000 Aug; 66(8):3592-602. PubMed ID: 10919825 [TBL] [Abstract][Full Text] [Related]
9. Microbial manganese and sulfate reduction in Black Sea shelf sediments. Thamdrup B; Rosselló-Mora R; Amann R Appl Environ Microbiol; 2000 Jul; 66(7):2888-97. PubMed ID: 10877783 [TBL] [Abstract][Full Text] [Related]
10. Use of specific PCR primers for the study of sulfate-reducing bacteria diversity in microbial mats of Ebro Delta, Spain. Benaiges-Fernandez R; Urmeneta J Int Microbiol; 2018 Dec; 21(4):231-235. PubMed ID: 30810897 [TBL] [Abstract][Full Text] [Related]
11. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818 [TBL] [Abstract][Full Text] [Related]
12. Aerobic sulfate reduction in microbial mats. Canfield DE; Des Marais DJ Science; 1991 Mar; 251():1471-3. PubMed ID: 11538266 [TBL] [Abstract][Full Text] [Related]
13. Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. Kulp TR; Han S; Saltikov CW; Lanoil BD; Zargar K; Oremland RS Appl Environ Microbiol; 2007 Aug; 73(16):5130-7. PubMed ID: 17601810 [TBL] [Abstract][Full Text] [Related]
14. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Loy A; Lehner A; Lee N; Adamczyk J; Meier H; Ernst J; Schleifer KH; Wagner M Appl Environ Microbiol; 2002 Oct; 68(10):5064-81. PubMed ID: 12324358 [TBL] [Abstract][Full Text] [Related]
15. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Minz D; Flax JL; Green SJ; Muyzer G; Cohen Y; Wagner M; Rittmann BE; Stahl DA Appl Environ Microbiol; 1999 Oct; 65(10):4666-71. PubMed ID: 10508104 [TBL] [Abstract][Full Text] [Related]
16. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan. Kubo K; Knittel K; Amann R; Fukui M; Matsuura K Syst Appl Microbiol; 2011 Jun; 34(4):293-302. PubMed ID: 21353426 [TBL] [Abstract][Full Text] [Related]
17. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Foti M; Sorokin DY; Lomans B; Mussman M; Zacharova EE; Pimenov NV; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Apr; 73(7):2093-100. PubMed ID: 17308191 [TBL] [Abstract][Full Text] [Related]
18. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Satoh H; Odagiri M; Ito T; Okabe S Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714 [TBL] [Abstract][Full Text] [Related]
19. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Canfield DE; Des Marais DJ Geochim Cosmochim Acta; 1993 Aug; 57(16):3971-84. PubMed ID: 11537735 [TBL] [Abstract][Full Text] [Related]
20. Bioremediation of oil by marine microbial mats. Cohen Y Int Microbiol; 2002 Dec; 5(4):189-93. PubMed ID: 12497184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]