These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 9687459)

  • 1. Influence of carbon source on nitrate removal by nitrate-tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat cultures.
    Piñar G; Kovárová K; Egli T; Ramos JL
    Appl Environ Microbiol; 1998 Aug; 64(8):2970-6. PubMed ID: 9687459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of nitrate from industrial wastewaters in a pilot plant by nitrate-tolerant klebsiella oxytoca CECT 4460 and arthrobacter globiformis CECT 4500.
    Pinar G; Oliva JM; Sanchez-Barbero L; Calvo V; Ramos JL
    Biotechnol Bioeng; 1998 Jun; 58(5):510-4. PubMed ID: 10099287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources.
    Durner R; Zinn M; Witholt B; Egli T
    Biotechnol Bioeng; 2001 Feb; 72(3):278-88. PubMed ID: 11135197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of oxygen tension on nitrate reduction by a Klebsiella sp. growing in chemostat culture.
    Dunn GM; Herbert RA; Brown CM
    J Gen Microbiol; 1979 Jun; 112(2):379-83. PubMed ID: 479838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic nitrate and nitrite reduction in continuous cultures of Escherichia coli E4.
    Brons HJ; Zehnder AJ
    Arch Microbiol; 1990; 153(6):531-6. PubMed ID: 2196029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of oxygen limitation in the formation of poly- -hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii.
    Senior PJ; Beech GA; Ritchie GA; Dawes EA
    Biochem J; 1972 Aug; 128(5):1193-201. PubMed ID: 4643700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant klebsiella oxytoca strains with improved efficiency in removal of high nitrate loads.
    Pinar G; Ramos JL
    Appl Environ Microbiol; 1998 Dec; 64(12):5016-9. PubMed ID: 9835599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological nitrate removal from wastewater of a metal-finishing industry.
    Gabaldón C; Izquierdo M; Martínez-Soria V; Marzal P; Penya-Roja JM; Javier Alvarez-Hornos F
    J Hazard Mater; 2007 Sep; 148(1-2):485-90. PubMed ID: 17416463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture.
    Neijssel OM; Tempest DW
    Arch Microbiol; 1976 Nov; 110(23):305-11. PubMed ID: 1015953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5al.
    Wu Q; Stewart V
    J Bacteriol; 1998 Mar; 180(5):1311-22. PubMed ID: 9495773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcalorimetric studies of Klebsiella aerogenes grown in chemostat culture. 2 C-limited and C-sufficient cultures.
    James AM; Djavan A
    Microbios; 1981; 30(121-122):163-70. PubMed ID: 7031438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homoethanol Production from Glycerol and Gluconate Using Recombinant
    Tao W; Wang Y; Walters E; Lin H; Li S; Huang H; Kasuga T; Fan Z
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture.
    Neijssel OM; Tempest DW
    Arch Microbiol; 1975 Dec; 106(3):251-8. PubMed ID: 766718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent microbial reduction of high concentrations of nitrate and perchlorate in an ion exchange membrane bioreactor.
    Fox S; Bruner T; Oren Y; Gilron J; Ronen Z
    Biotechnol Bioeng; 2016 Sep; 113(9):1881-91. PubMed ID: 26913813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic behavior of some polyphosphate-accumulating bacteria isolates in the presence of nitrate and oxygen.
    Merzouki M; Bernet N; Delgenès JP; Moletta R; Benlemlih M
    Curr Microbiol; 1999 May; 38(5):300-8. PubMed ID: 10355118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination of sucrose uptake and respiration in the yeast Debaryomyces yamadae.
    Kaliterna J; Weusthuis RA; Castrillo JI; van Dijken JP; Pronk JT
    Microbiology (Reading); 1995 Jul; 141 ( Pt 7)():1567-74. PubMed ID: 7551025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter.
    Gómez MA; González-López J; Hontoria-García E
    J Hazard Mater; 2000 Dec; 80(1-3):69-80. PubMed ID: 11080570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate.
    Brix H; Dyhr-Jensen K; Lorenzen B
    J Exp Bot; 2002 Dec; 53(379):2441-50. PubMed ID: 12432036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic responses of Pseudomonas fluorescens DF57 to nitrogen or carbon source addition.
    Roca C; Olsson L
    J Biotechnol; 2001 Mar; 86(1):39-50. PubMed ID: 11223143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.