These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 9687459)
41. Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. O'Grady J; Morgan JA Bioprocess Biosyst Eng; 2011 Jan; 34(1):121-5. PubMed ID: 20976474 [TBL] [Abstract][Full Text] [Related]
42. Metabolic analyses of the improved ε-poly-L-lysine productivity using a glucose-glycerol mixed carbon source in chemostat cultures. Zhang JH; Zeng X; Chen XS; Mao ZG Bioprocess Biosyst Eng; 2018 Aug; 41(8):1143-1151. PubMed ID: 29680869 [TBL] [Abstract][Full Text] [Related]
43. Aerobic growth on nitroglycerin as the sole carbon, nitrogen, and energy source by a mixed bacterial culture. Accashian JV; Vinopal RT; Kim BJ; Smets BF Appl Environ Microbiol; 1998 Sep; 64(9):3300-4. PubMed ID: 9726874 [TBL] [Abstract][Full Text] [Related]
44. Physiology of Candida utilis yeast in zinc-limited chemostat culture. Lawford HG; Pik JR; Lawford GR; Williams T; Kligerman A Can J Microbiol; 1980 Jan; 26(1):64-70. PubMed ID: 7190862 [TBL] [Abstract][Full Text] [Related]
45. Application of glycerol as carbon source for continuous drinking water denitrification using microorganism from natural biomass. Schroeder A; Souza DH; Fernandes M; Rodrigues EB; Trevisan V; Skoronski E J Environ Manage; 2020 Feb; 256():109964. PubMed ID: 31989983 [TBL] [Abstract][Full Text] [Related]
46. Quantification of multiple-substrate controlled growth--simultaneous ammonium and glucose limitation in chemostat cultures of Klebsiella pneumoniae. Rutgers M; Balk PA; van Dam K Arch Microbiol; 1990; 153(5):478-84. PubMed ID: 2187428 [TBL] [Abstract][Full Text] [Related]
47. Formation of fermentation products and extracellular protease during anaerobic growth of Bacillus licheniformis in chemostat and batch-culture. Bulthuis BA; Rommens C; Koningstein GM; Stouthamer AH; van Verseveld HW Antonie Van Leeuwenhoek; 1991; 60(3-4):355-71. PubMed ID: 1807202 [TBL] [Abstract][Full Text] [Related]
48. High cell density cultivation of Pseudomonas oleovorans: growth and production of poly (3-hydroxyalkanoates) in two-liquid phase batch and fed-batch systems. Preusting H; van Houten R; Hoefs A; van Langenberghe EK; Favre-Bulle O; Witholt B Biotechnol Bioeng; 1993 Mar; 41(5):550-6. PubMed ID: 18609586 [TBL] [Abstract][Full Text] [Related]
49. Continuous cultivation in a chemostat of the phototrophic procaryote, Anacystis nidulans, under nitrogen-limiting conditions. Lehmann M; Wöber G Mol Cell Biochem; 1978 May; 19(3):155-63. PubMed ID: 96328 [TBL] [Abstract][Full Text] [Related]
50. The influence of carbon sources on recombinant-human- growth-hormone production by Pichia pastoris is dependent on phenotype: a comparison of Muts and Mut+ strains. Orman MA; Calik P; Ozdamar TH Biotechnol Appl Biochem; 2009 Mar; 52(Pt 3):245-55. PubMed ID: 18754757 [TBL] [Abstract][Full Text] [Related]
51. Oxygen transfer rate, respiration and yields in batch and chemostat cultures of Klebsiella aerogenes. Páca J Folia Microbiol (Praha); 1976; 21(6):417-30. PubMed ID: 791773 [TBL] [Abstract][Full Text] [Related]
52. Growth and diosgenin production by Dioscorea deltoidea cells in batch and continuous cultures. Tal B; Goldberg I Planta Med; 1982 Feb; 44(2):107-10. PubMed ID: 17402089 [TBL] [Abstract][Full Text] [Related]
53. Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Del Río E; Acién FG; García-Malea MC; Rivas J; Molina-Grima E; Guerrero MG Biotechnol Bioeng; 2005 Sep; 91(7):808-15. PubMed ID: 15937954 [TBL] [Abstract][Full Text] [Related]
54. Factors influencing the formation and stability of D-glucoside 3-dehydrogenase activity in cultures of Agrobacterium tumefaciens. Kurowski WM; Fensom AH; Pirt SJ J Gen Microbiol; 1975 Oct; 90(2):191-202. PubMed ID: 1194891 [TBL] [Abstract][Full Text] [Related]
55. Removal of high concentrations of nitrate from industrial wastewaters by bacteria. Pinar G; Duque E; Haidour A; Oliva J; Sanchez-Barbero L; Calvo V; Ramos JL Appl Environ Microbiol; 1997 May; 63(5):2071-3. PubMed ID: 16535614 [TBL] [Abstract][Full Text] [Related]
56. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Kumar P; Sharma R; Ray S; Mehariya S; Patel SKS; Lee JK; Kalia VC Bioresour Technol; 2015 Apr; 182():383-388. PubMed ID: 25686722 [TBL] [Abstract][Full Text] [Related]
57. Denitrification and dissimilatory nitrate reduction to ammonium in digested sludge. Kaspar HF; Tiedje JM; Firestone RB Can J Microbiol; 1981 Sep; 27(9):878-85. PubMed ID: 7306876 [TBL] [Abstract][Full Text] [Related]
58. Implication of quantifying nitrate utilization and CO Zhang K; Wu Y; Su Y; Li H BMC Plant Biol; 2022 Aug; 22(1):392. PubMed ID: 35931951 [TBL] [Abstract][Full Text] [Related]
59. Fermentation of glycerol by Clostridium pasteurianum--batch and continuous culture studies. Biebl H J Ind Microbiol Biotechnol; 2001 Jul; 27(1):18-26. PubMed ID: 11598806 [TBL] [Abstract][Full Text] [Related]
60. Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by Arthrobacter arilaitensis Y-10. He T; Xie D; Li Z; Ni J; Sun Q Bioresour Technol; 2017 Sep; 239():66-73. PubMed ID: 28500889 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]