These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9687484)

  • 1. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene.
    Bradley PM; Chapelle FH; Lovley DR
    Appl Environ Microbiol; 1998 Aug; 64(8):3102-5. PubMed ID: 9687484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroethene biodegradation in sediments at 4 degrees C.
    Bradley PM; Richmond S; Chapelle FH
    Appl Environ Microbiol; 2005 Oct; 71(10):6414-7. PubMed ID: 16204570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic biodegradation of vinyl chloride in groundwater samples.
    Davis JW; Carpenter CL
    Appl Environ Microbiol; 1990 Dec; 56(12):3878-80. PubMed ID: 2128014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors.
    Cervantes FJ; Dijksma W; Duong-Dac T; Ivanova A; Lettinga G; Field JA
    Appl Environ Microbiol; 2001 Oct; 67(10):4471-8. PubMed ID: 11571145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential application of electron donors and humic acids for the anaerobic bioremediation of chlorinated aliphatic hydrocarbons.
    Scherr KE; Nahold MM; Lantschbauer W; Loibner AP
    N Biotechnol; 2011 Dec; 29(1):116-25. PubMed ID: 21600322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic bioremediation in a solvent-contaminated alluvial groundwater.
    Williams RA; Shuttle KA; Kunkler JL; Madsen EL; Hooper SW
    J Ind Microbiol Biotechnol; 1997; 18(2-3):177-88. PubMed ID: 9134765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d.
    Bai YN; Wang XN; Wu J; Lu YZ; Fu L; Zhang F; Lau TC; Zeng RJ
    Water Res; 2019 Nov; 164():114935. PubMed ID: 31387057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of organic compounds in anaerobic, hydrothermal sulphate-reducing marine sediments.
    Tor JM; Amend JP; Lovley DR
    Environ Microbiol; 2003 Jul; 5(7):583-91. PubMed ID: 12823190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions.
    So CM; Young LY
    Environ Toxicol Chem; 2001 Mar; 20(3):473-8. PubMed ID: 11349845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation.
    Lohner ST; Tiehm A
    Environ Sci Technol; 2009 Sep; 43(18):7098-104. PubMed ID: 19806748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humics as an electron donor for anaerobic respiration.
    Lovley DR; Fraga JL; Coates JD; Blunt-Harris EL
    Environ Microbiol; 1999 Feb; 1(1):89-98. PubMed ID: 11207721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-scale oxygen distribution determines the vinyl chloride biodegradation pathway in surficial sediments of riverbed hyporheic zones.
    Atashgahi S; Maphosa F; Doğan E; Smidt H; Springael D; Dejonghe W
    FEMS Microbiol Ecol; 2013 Apr; 84(1):133-42. PubMed ID: 23167955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth kinetics and stable carbon isotope fractionation during aerobic degradation of cis-1,2-dichloroethene and vinyl chloride.
    Tiehm A; Schmidt KR; Pfeifer B; Heidinger M; Ertl S
    Water Res; 2008 May; 42(10-11):2431-8. PubMed ID: 18313719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.
    Coates JD; Cole KA; Chakraborty R; O'Connor SM; Achenbach LA
    Appl Environ Microbiol; 2002 May; 68(5):2445-52. PubMed ID: 11976120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions.
    Bradley PM; Landmeyer JE; Chapelle FH
    Environ Sci Technol; 2002 Oct; 36(19):4087-90. PubMed ID: 12380079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlations between environmental variables and bacterial community structures suggest Fe(III) and vinyl chloride reduction as antagonistic terminal electron-accepting processes.
    Shani N; Rossi P; Holliger C
    Environ Sci Technol; 2013 Jul; 47(13):6836-45. PubMed ID: 23484639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolution and mobilization of uranium in a reduced sediment by natural humic substances under anaerobic conditions.
    Luo W; Gu B
    Environ Sci Technol; 2009 Jan; 43(1):152-6. PubMed ID: 19209599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Anaerobic biodegradation of microcystin by bacterial community from sediment of Dianchi Lake].
    Chen XG; Yang X; Chen J; Zhang SH; Xiao BD
    Huan Jing Ke Xue; 2009 Sep; 30(9):2527-31. PubMed ID: 19927798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors.
    Cervantes FJ; Mancilla AR; Ríos-del Toro EE; Alpuche-Solís AG; Montoya-Lorenzana L
    J Hazard Mater; 2011 Nov; 195():201-7. PubMed ID: 21880424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.