These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 9688624)
1. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Gibala MJ; MacLean DA; Graham TE; Saltin B Am J Physiol; 1998 Aug; 275(2):E235-42. PubMed ID: 9688624 [TBL] [Abstract][Full Text] [Related]
2. Exercise with low muscle glycogen augments TCA cycle anaplerosis but impairs oxidative energy provision in humans. Gibala MJ; Peirce N; Constantin-Teodosiu D; Greenhaff PL J Physiol; 2002 May; 540(Pt 3):1079-86. PubMed ID: 11986392 [TBL] [Abstract][Full Text] [Related]
3. PDH activation by dichloroacetate reduces TCA cycle intermediates at rest but not during exercise in humans. Gibala MJ; Saltin B Am J Physiol; 1999 Jul; 277(1):E33-8. PubMed ID: 10409125 [TBL] [Abstract][Full Text] [Related]
4. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle. Bowtell JL; Marwood S; Bruce M; Constantin-Teodosiu D; Greenhaff PL Sports Med; 2007; 37(12):1071-88. PubMed ID: 18027994 [TBL] [Abstract][Full Text] [Related]
5. Dissociation between muscle tricarboxylic acid cycle pool size and aerobic energy provision during prolonged exercise in humans. Gibala MJ; González-Alonso J; Saltin B J Physiol; 2002 Dec; 545(2):705-13. PubMed ID: 12456845 [TBL] [Abstract][Full Text] [Related]
6. Effect of endurance training on muscle TCA cycle metabolism during exercise in humans. Howarth KR; LeBlanc PJ; Heigenhauser GJ; Gibala MJ J Appl Physiol (1985); 2004 Aug; 97(2):579-84. PubMed ID: 15121741 [TBL] [Abstract][Full Text] [Related]
7. Glycogen availability does not affect the TCA cycle or TAN pools during prolonged, fatiguing exercise. Baldwin J; Snow RJ; Gibala MJ; Garnham A; Howarth K; Febbraio MA J Appl Physiol (1985); 2003 Jun; 94(6):2181-7. PubMed ID: 12736189 [TBL] [Abstract][Full Text] [Related]
8. Tricarboxylic acid cycle intermediates in human muscle at rest and during prolonged cycling. Gibala MJ; Tarnopolsky MA; Graham TE Am J Physiol; 1997 Feb; 272(2 Pt 1):E239-44. PubMed ID: 9124329 [TBL] [Abstract][Full Text] [Related]
9. Short-term training attenuates muscle TCA cycle expansion during exercise in women. Dawson KD; Howarth KR; Tarnopolsky MA; Wong ND; Gibala MJ J Appl Physiol (1985); 2003 Sep; 95(3):999-1004. PubMed ID: 12766182 [TBL] [Abstract][Full Text] [Related]
10. Glutamine supplementation promotes anaplerosis but not oxidative energy delivery in human skeletal muscle. Bruce M; Constantin-Teodosiu D; Greenhaff PL; Boobis LH; Williams C; Bowtell JL Am J Physiol Endocrinol Metab; 2001 Apr; 280(4):E669-75. PubMed ID: 11254475 [TBL] [Abstract][Full Text] [Related]
11. Tricarboxylic acid cycle intermediates accumulate at the onset of intense exercise in man but are not essential for the increase in muscle oxygen uptake. Bangsbo J; Gibala MJ; Howarth KR; Krustrup P Pflugers Arch; 2006 Sep; 452(6):737-43. PubMed ID: 16721612 [TBL] [Abstract][Full Text] [Related]
12. Glutamine: an anaplerotic precursor. Bowtell JL; Bruce M Nutrition; 2002 Mar; 18(3):222-4. PubMed ID: 11882393 [TBL] [Abstract][Full Text] [Related]
13. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Sahlin K; Katz A; Broberg S Am J Physiol; 1990 Nov; 259(5 Pt 1):C834-41. PubMed ID: 2240197 [TBL] [Abstract][Full Text] [Related]
14. Low glycogen and branched-chain amino acid ingestion do not impair anaplerosis during exercise in humans. Gibala MJ; Lozej M; Tarnopolsky MA; McLean C; Graham TE J Appl Physiol (1985); 1999 Nov; 87(5):1662-7. PubMed ID: 10562606 [TBL] [Abstract][Full Text] [Related]
15. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism. Mourtzakis M; Graham TE; González-Alonso J; Saltin B J Appl Physiol (1985); 2008 Aug; 105(2):547-54. PubMed ID: 18511521 [TBL] [Abstract][Full Text] [Related]
16. Effects of short-term submaximal training in humans on muscle metabolism in exercise. Putman CT; Jones NL; Hultman E; Hollidge-Horvat MG; Bonen A; McConachie DR; Heigenhauser GJ Am J Physiol; 1998 Jul; 275(1):E132-9. PubMed ID: 9688884 [TBL] [Abstract][Full Text] [Related]
17. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Wagenmakers AJ Exerc Sport Sci Rev; 1998; 26():287-314. PubMed ID: 9696993 [TBL] [Abstract][Full Text] [Related]
18. Regulation of skeletal muscle amino acid metabolism during exercise. Gibala MJ Int J Sport Nutr Exerc Metab; 2001 Mar; 11(1):87-108. PubMed ID: 11255139 [TBL] [Abstract][Full Text] [Related]
19. The importance of pyruvate availability to PDC activation and anaplerosis in human skeletal muscle. Constantin-Teodosiu D; Simpson EJ; Greenhaff PL Am J Physiol; 1999 Mar; 276(3):E472-8. PubMed ID: 10070012 [TBL] [Abstract][Full Text] [Related]
20. Anaplerotic processes in human skeletal muscle during brief dynamic exercise. Gibala MJ; MacLean DA; Graham TE; Saltin B J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):703-13. PubMed ID: 9279819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]