BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 9688658)

  • 1. Duodenal Ca2+ absorption is not stimulated by calcitriol during early postnatal development of pigs.
    Schroeder B; Dahl MR; Breves G
    Am J Physiol; 1998 Aug; 275(2):G305-13. PubMed ID: 9688658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate transport in pig proximal small intestines during postnatal development: lack of modulation by calcitriol.
    Schröder B; Hattenhauer O; Breves G
    Endocrinology; 1998 Apr; 139(4):1500-7. PubMed ID: 9528927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of calbindin-D9k in buffering cytosolic free Ca2+ ions in pig duodenal enterocytes.
    Schröder B; Schlumbohm C; Kaune R; Breves G
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):715-22. PubMed ID: 8734984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for vitamin D-independent active calcium absorption in newborn piglets.
    Schröder B; Kaune R; Schlumbohm C; Breves G; Harmeyer J
    Calcif Tissue Int; 1993 Apr; 52(4):305-9. PubMed ID: 8385545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of calcitriol on stimulation of ion transport in pig jejunal mucosa.
    Schröder B; Kaune R; Harmeyer J
    J Physiol; 1991 Feb; 433():451-65. PubMed ID: 1841952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No effect of vitamin D3 treatment on active calcium absorption across ruminal epithelium of sheep.
    Schröder B; Goebel W; Huber K; Breves G
    J Vet Med A Physiol Pathol Clin Med; 2001 Aug; 48(6):353-63. PubMed ID: 11554493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations of duodenal vitamin D-dependent calcium-binding protein content and calcium uptake in brush border membrane vesicles in aged Wistar rats: role of 1,25-dihydroxyvitamin D3.
    Liang CT; Barnes J; Sacktor B; Takamoto S
    Endocrinology; 1991 Apr; 128(4):1780-4. PubMed ID: 2004601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Duodenal calcium binding protein and active calcium transport in rats: are they functionally related?
    Chabanis S; Hanrotel C; Duchambon P; Banide H; Kubrusly M; Aymard P; Lacour B; Drüeke T
    Nephrol Dial Transplant; 1994; 9(10):1402-7. PubMed ID: 7816252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calbindin D9k is not required for 1,25-dihydroxyvitamin D3-mediated Ca2+ absorption in small intestine.
    Akhter S; Kutuzova GD; Christakos S; DeLuca HF
    Arch Biochem Biophys; 2007 Apr; 460(2):227-32. PubMed ID: 17224126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo effect of calcitriol on calcium transport and calcium binding proteins in the spontaneously hypertensive rat.
    Roullet CM; Roullet JB; Martin AS; McCarron DA
    Hypertension; 1994 Aug; 24(2):176-82. PubMed ID: 8039841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calbindin-D9k stimulates the calcium pump in rat enterocyte basolateral membranes.
    Walters JR
    Am J Physiol; 1989 Jan; 256(1 Pt 1):G124-8. PubMed ID: 2536235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redistribution of calbindin-D28k in chick intestine in response to calcium transport.
    Nemere I; Leathers VL; Thompson BS; Luben RA; Norman AW
    Endocrinology; 1991 Dec; 129(6):2972-84. PubMed ID: 1659521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism for the disparate actions of calcitriol and 22-oxacalcitriol in the intestine.
    Brown AJ; Finch J; Grieff M; Ritter C; Kubodera N; Nishii Y; Slatopolsky E
    Endocrinology; 1993 Sep; 133(3):1158-64. PubMed ID: 8396012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal intestinal regulation of calbindin-D9K and calmodulin by dietary calcium in genetic hypertension.
    Roullet CM; Roullet JB; Duchambon P; Thomasset M; Lacour B; McCarron DA; Drüeke T
    Am J Physiol; 1991 Sep; 261(3 Pt 2):F474-80. PubMed ID: 1887908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidermal growth factor increases intestinal calbindin-D9k and 1,25-dihydroxyvitamin D receptors in neonatal rats.
    Bruns DE; Krishnan AV; Feldman D; Gray RW; Christakos S; Hirsch GN; Bruns ME
    Endocrinology; 1989 Jul; 125(1):478-85. PubMed ID: 2544409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the molecular mechanism of intestinal calcium transport.
    Wasserman RH; Fullmer CS
    Adv Exp Med Biol; 1989; 249():45-65. PubMed ID: 2543194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary inulin alters the intestinal absorptive and barrier function of piglet intestine after weaning.
    Awad WA; Ghareeb K; Paßlack N; Zentek J
    Res Vet Sci; 2013 Aug; 95(1):249-54. PubMed ID: 23523472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of vitamin D3 on duodenal calcium absorption in vivo during early development.
    Dostal LA; Toverud SU
    Am J Physiol; 1984 May; 246(5 Pt 1):G528-34. PubMed ID: 6547027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calmodulin may mediate 1,25-dihydroxyvitamin D-stimulated intestinal calcium transport.
    Bikle DD; Munson S; Chafouleas J
    FEBS Lett; 1984 Aug; 174(1):30-3. PubMed ID: 6547914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice.
    Hoenderop JG; Dardenne O; Van Abel M; Van Der Kemp AW; Van Os CH; St -Arnaud R; Bindels RJ
    FASEB J; 2002 Sep; 16(11):1398-406. PubMed ID: 12205031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.