These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9688723)

  • 1. Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28 degrees C.
    Bruton JD; Lännergren J; Westerblad H
    J Appl Physiol (1985); 1998 Aug; 85(2):478-83. PubMed ID: 9688723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres.
    Chin ER; Allen DG
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):831-40. PubMed ID: 9769425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature.
    Westerblad H; Bruton JD; Lännergren J
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):193-204. PubMed ID: 9097943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes of intracellular pH due to repetitive stimulation of single fibres from mouse skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1992 Apr; 449():49-71. PubMed ID: 1522520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation, [Ca2+]i and [Mg2+]i during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):31-43. PubMed ID: 7853224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle.
    Lännergren J; Westerblad H
    J Physiol; 1991 Mar; 434():307-22. PubMed ID: 1902515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slowing of relaxation during fatigue in single mouse muscle fibres.
    Westerblad H; Lännergren J
    J Physiol; 1991 Mar; 434():323-36. PubMed ID: 1902516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in mitochondrial Ca2+ detected with Rhod-2 in single frog and mouse skeletal muscle fibres during and after repeated tetanic contractions.
    Lännergren J; Westerblad H; Bruton JD
    J Muscle Res Cell Motil; 2001; 22(3):265-75. PubMed ID: 11763199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of intracellular acidification and varied temperature on force, stiffness, and speed of shortening in frog muscle fibers.
    Radzyukevich T; Edman KA
    Am J Physiol Cell Physiol; 2004 Jul; 287(1):C106-13. PubMed ID: 14998789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slowed relaxation in fatigued skeletal muscle fibers of Xenopus and Mouse. Contribution of [Ca2+]i and cross-bridges.
    Westerblad H; Lännergren J; Allen DG
    J Gen Physiol; 1997 Mar; 109(3):385-99. PubMed ID: 9089444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular PO(2) decreases with increasing stimulation frequency in contracting single Xenopus muscle fibers.
    Howlett RA; Hogan MC
    J Appl Physiol (1985); 2001 Aug; 91(2):632-6. PubMed ID: 11457774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms underlying reduced maximum shortening velocity during fatigue of intact, single fibres of mouse muscle.
    Westerblad H; Dahlstedt AJ; Lännergren J
    J Physiol; 1998 Jul; 510 ( Pt 1)(Pt 1):269-77. PubMed ID: 9625883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of decreased pH on force and phosphocreatine in mammalian skeletal muscle.
    Meyer RA; Adams GR; Fisher MJ; Dillon PF; Krisanda JM; Brown TR; Kushmerick MJ
    Can J Physiol Pharmacol; 1991 Feb; 69(2):305-10. PubMed ID: 1905190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of intracellular pH on force development depends on temperature in intact skeletal muscle from mouse.
    Wiseman RW; Beck TW; Chase PB
    Am J Physiol; 1996 Sep; 271(3 Pt 1):C878-86. PubMed ID: 8843718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidosis has no effect on the ATP cost of contraction in cat fast- and slow-twitch skeletal muscles.
    Harkema SJ; Adams GR; Meyer RA
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C485-90. PubMed ID: 9124291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of repetitive tetanic stimulation at long intervals on excitation-contraction coupling in frog skeletal muscle.
    Bruton JD; Lännergren J; Westerblad H
    J Physiol; 1996 Aug; 495 ( Pt 1)(Pt 1):15-22. PubMed ID: 8866348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue.
    Cairns SP; Leader JP; Loiselle DS; Higgins A; Lin W; Renaud JM
    J Appl Physiol (1985); 2015 Mar; 118(6):662-74. PubMed ID: 25571990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The activity-induced reduction of myofibrillar Ca2+ sensitivity in mouse skeletal muscle is reversed by dithiothreitol.
    Moopanar TR; Allen DG
    J Physiol; 2006 Feb; 571(Pt 1):191-200. PubMed ID: 16339177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.