These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9688738)

  • 1. ATP-sensitive K+ channel blocker glibenclamide and diaphragm fatigue during normoxia and hypoxia.
    Van Lunteren E; Moyer M; Torres A
    J Appl Physiol (1985); 1998 Aug; 85(2):601-8. PubMed ID: 9688738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide toxin blockers of voltage-sensitive K+ channels: inotropic effects on diaphragm.
    van Lunteren E; Moyer M
    J Appl Physiol (1985); 1999 Mar; 86(3):1009-16. PubMed ID: 10066717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of K+ channel blockade on fatigue in rat diaphragm muscle.
    Van Lunteren E; Moyer M; Torres A
    J Appl Physiol (1985); 1995 Sep; 79(3):738-47. PubMed ID: 8567512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inotropic effects of the K+ channel blocker 3,4-diaminopyridine on fatigued diaphragm muscle.
    Ionno M; Moyer M; Pollarine J; van Lunteren E
    Respir Physiol Neurobiol; 2008 Jan; 160(1):45-53. PubMed ID: 17881299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of DAP on diaphragm force and fatigue, including fatigue due to neurotransmission failure.
    Van Lunteren E; Moyer M
    J Appl Physiol (1985); 1996 Nov; 81(5):2214-20. PubMed ID: 8941547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hypoxia on diaphragm relaxation rate during fatigue.
    Van Lunteren E; Torres A; Moyer M
    J Appl Physiol (1985); 1997 May; 82(5):1472-8. PubMed ID: 9134895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The myoneural effects of lithium chloride on the nerve-muscle preparations of rats. Role of adenosine triphosphate-sensitive potassium channels.
    Abdel-Zaher AO
    Pharmacol Res; 2000 Feb; 41(2):163-78. PubMed ID: 10623484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of glibenclamide, a blocker of K+ ATP-sensitive potassium channels, on diaphragmatic fatigue during endotoxaemia in pigs.
    Aguggini G; Dimori M; Vanelli G; Albertini M
    Vet Res Commun; 1996; 20(2):183-90. PubMed ID: 8711899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiologic and inotropic effects of K+-channel blockade in aged diaphragm.
    van LUNTEREN E; Moyer M
    Am J Respir Crit Care Med; 1998 Sep; 158(3):820-6. PubMed ID: 9731011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinacidil suppresses contractility and preserves energy but glibenclamide has no effect during muscle fatigue.
    Matar W; Nosek TM; Wong D; Renaud J
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C404-16. PubMed ID: 10666037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuation of rat diaphragm low-frequency fatigue by vanadate in vitro.
    van Lunteren E; Snajdar RM
    Respir Physiol; 1999 Sep; 117(2-3):121-30. PubMed ID: 10563440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of extracellular HCO3(-) on fatigue, pHi, and K+ efflux in rat skeletal muscles.
    Broch-Lips M; Overgaard K; Praetorius HA; Nielsen OB
    J Appl Physiol (1985); 2007 Aug; 103(2):494-503. PubMed ID: 17446415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of glibenclamide on frog skeletal muscle: evidence for K+ATP channel activation during fatigue.
    Light PE; Comtois AS; Renaud JM
    J Physiol; 1994 Mar; 475(3):495-507. PubMed ID: 8006831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of glibenclamide on tetanic force and intracellular calcium in normal and fatigued mouse skeletal muscle.
    Duty S; Allen DG
    Exp Physiol; 1995 Jul; 80(4):529-41. PubMed ID: 7576594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.
    Cifelli C; Boudreault L; Gong B; Bercier JP; Renaud JM
    Exp Physiol; 2008 Oct; 93(10):1126-38. PubMed ID: 18586858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue-inducing stimulation resolves myotonia in a drug-induced model.
    van Lunteren E; Spiegler SE; Moyer M
    BMC Physiol; 2011 Feb; 11():5. PubMed ID: 21356096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenine nucleotides via activation of ATP-sensitive K+ channels modulate hypoxic response in rat pulmonary artery.
    Shigemori K; Ishizaki T; Matsukawa S; Sakai A; Nakai T; Miyabo S
    Am J Physiol; 1996 May; 270(5 Pt 1):L803-9. PubMed ID: 8967515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of fatigue properties on the pattern of stimulation in the rat diaphragm muscle.
    Gölgeli A; Ozesmi C; Ozesmi M
    Indian J Physiol Pharmacol; 1995 Oct; 39(4):315-22. PubMed ID: 8582742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking ATP-sensitive K+ channel during metabolic inhibition impairs muscle contractility.
    Gramolini A; Renaud JM
    Am J Physiol; 1997 Jun; 272(6 Pt 1):C1936-46. PubMed ID: 9227423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.