These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9688819)

  • 21. The beneficial influence of ultrasound in the polymerization of epsilon-caprolactam to polyamide-6 (Nylon 6). Part II: additional experiment to understand the "pre-sonication effect".
    Ragaini V; Pirola C; Rocco G; Guaita C
    Ultrason Sonochem; 2007 Sep; 14(6):689-94. PubMed ID: 17275390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organocatalytic Copolymerization of Cyclic Lysine Derivative and ε-Caprolactam toward Antibacterial Nylon-6 Polymers.
    Lian J; Chen J; Luan S; Liu W; Zong B; Tao Y; Wang X
    ACS Macro Lett; 2022 Jan; 11(1):46-52. PubMed ID: 35574805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decolorization of Reactive Black 39 and Acid Red 360 by Pseudomonas aeruginosa.
    Behzat B
    Water Sci Technol; 2015; 72(8):1266-73. PubMed ID: 26465295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of alkaline protease by Pseudomonas aeruginosa using proteinaceous solid waste generated from leather manufacturing industries.
    Ganesh Kumar A; Swarnalatha S; Sairam B; Sekaran G
    Bioresour Technol; 2008 Apr; 99(6):1939-44. PubMed ID: 17481889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acrylic acid removal by acrylic acid utilizing bacteria from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system.
    Wang CC; Lee CM
    Water Sci Technol; 2006; 53(6):181-6. PubMed ID: 16749456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrothermal processing of polyethylene-terephthalate and nylon-6 mixture as a plastic waste upcycling treatment: A comprehensive multi-phase analysis.
    Darzi R; Dubowski Y; Posmanik R
    Waste Manag; 2022 Apr; 143():223-231. PubMed ID: 35279014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions.
    Ortega RA; Carter ES; Ortega AE
    PLoS One; 2016; 11(7):e0158493. PubMed ID: 27411088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of phenol biodegradation in saline solutions by monocultures of Pseudomonas aeruginosa and Pseudomonas pseudomallei.
    Afzal M; Iqbal S; Rauf S; Khalid ZM
    J Hazard Mater; 2007 Oct; 149(1):60-6. PubMed ID: 17459580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioremediation of an industrial effluent containing monocrotophos.
    Bhadbhade BJ; Sarnaik SS; Kanekar PP
    Curr Microbiol; 2002 Nov; 45(5):346-9. PubMed ID: 12232665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of the epsilon-caprolactam denitrifying bacteria from a wastewater treatment system manufactured with acrylonitrile-butadiene-styrene resin.
    Wang CC; Lee CM
    J Hazard Mater; 2007 Jun; 145(1-2):136-41. PubMed ID: 17161908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Method of test and survey of caprolactam migration into foods packaged in nylon-6.
    Bradley EL; Speck DR; Read WA; Castle L
    Food Addit Contam; 2004 Dec; 21(12):1179-85. PubMed ID: 15799563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Arthrobacter citreus strain suitable for degrading ε-caprolactam in polyamide waste and accumulation of glutamic acid.
    Baxi NN; Patel S; Hansoti D
    AMB Express; 2019 Oct; 9(1):161. PubMed ID: 31605246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Sporogenic bacteria--active destroyers of caprolactam].
    Gvozdiak PI; Roi AA; Rotmistrov MN
    Prikl Biokhim Mikrobiol; 1974; 10(5):738-40. PubMed ID: 4219046
    [No Abstract]   [Full Text] [Related]  

  • 35. Redesigned Hybrid Nylons with Optical Clarity and Chemical Recyclability.
    Cywar RM; Rorrer NA; Mayes HB; Maurya AK; Tassone CJ; Beckham GT; Chen EY
    J Am Chem Soc; 2022 Mar; 144(12):5366-5376. PubMed ID: 35290039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification, Characterization, and Application of a Highly Sensitive Lactam Biosensor from
    Thompson MG; Pearson AN; Barajas JF; Cruz-Morales P; Sedaghatian N; Costello Z; Garber ME; Incha MR; Valencia LE; Baidoo EEK; Martin HG; Mukhopadhyay A; Keasling JD
    ACS Synth Biol; 2020 Jan; 9(1):53-62. PubMed ID: 31841635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Key Role of the dca Genes in epsilon-Caprolactam Catabolism in Pseudomonas strains].
    Esikova TZ; Volkova OV; Taran SA; Boronin AM
    Mikrobiologiia; 2015; 84(5):616-9. PubMed ID: 27169251
    [No Abstract]   [Full Text] [Related]  

  • 38. [Characteristics of spore-forming bacteria of the genus Bacillus that break down caprolactam].
    Rotmistrov MN; Roĭ AA; Gvozdiak PI
    Mikrobiologiia; 1975; 44(4):727-31. PubMed ID: 809644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of competition for inorganic nutrients in the biodegradation of mixtures of substrates.
    Steffensen WS; Alexander M
    Appl Environ Microbiol; 1995 Aug; 61(8):2859-62. PubMed ID: 7487018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Occurrence of Pseudomonas aeruginosa in waste water and its behavior under biological treatment].
    Geuenich HH; Müller HE
    Zentralbl Bakteriol Mikrobiol Hyg B; 1984 Jun; 179(3):259-65. PubMed ID: 6433595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.