BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9688865)

  • 1. Glutathione permeability of CFTR.
    Linsdell P; Hanrahan JW
    Am J Physiol; 1998 Jul; 275(1):C323-6. PubMed ID: 9688865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione levels and BAX activation during apoptosis due to oxidative stress in cells expressing wild-type and mutant cystic fibrosis transmembrane conductance regulator.
    Jungas T; Motta I; Duffieux F; Fanen P; Stoven V; Ojcius DM
    J Biol Chem; 2002 Aug; 277(31):27912-8. PubMed ID: 12023951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P; Evagelidis A; Hanrahan JW
    Biophys J; 2000 Jun; 78(6):2973-82. PubMed ID: 10827976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl- channel expressed in mammalian cell lines.
    Linsdell P; Zheng SX; Hanrahan JW
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):1-16. PubMed ID: 9729613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P
    J Biol Chem; 2005 Mar; 280(10):8945-50. PubMed ID: 15634668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction.
    Raghuram V; Mak DO; Foskett JK
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1300-5. PubMed ID: 11158634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions.
    Gong X; Linsdell P
    Arch Biochem Biophys; 2004 Jun; 426(1):78-82. PubMed ID: 15130785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P; Hanrahan JW
    J Gen Physiol; 1998 Apr; 111(4):601-14. PubMed ID: 9524141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a mammalian cell line and its regulation by a critical pore residue.
    Linsdell P; Hanrahan JW
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):687-93. PubMed ID: 8930836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation.
    Hudson VM
    Free Radic Biol Med; 2001 Jun; 30(12):1440-61. PubMed ID: 11390189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore.
    Mansoura MK; Smith SS; Choi AD; Richards NW; Strong TV; Drumm ML; Collins FS; Dawson DC
    Biophys J; 1998 Mar; 74(3):1320-32. PubMed ID: 9512029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CFTR directly mediates nucleotide-regulated glutathione flux.
    Kogan I; Ramjeesingh M; Li C; Kidd JF; Wang Y; Leslie EM; Cole SP; Bear CE
    EMBO J; 2003 May; 22(9):1981-9. PubMed ID: 12727866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain 1 (NBD-1) and CFTR truncated within NBD-1 target to the epithelial plasma membrane and increase anion permeability.
    Clancy JP; Hong JS; Bebök Z; King SA; Demolombe S; Bedwell DM; Sorscher EJ
    Biochemistry; 1998 Oct; 37(43):15222-30. PubMed ID: 9790686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A regulatory role of polycystin-1 on cystic fibrosis transmembrane conductance regulator plasma membrane expression.
    Ikeda M; Fong P; Cheng J; Boletta A; Qian F; Zhang XM; Cai H; Germino GG; Guggino WB
    Cell Physiol Biochem; 2006; 18(1-3):9-20. PubMed ID: 16914886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel.
    Fischer H; Machen TE
    Biophys J; 1996 Dec; 71(6):3073-82. PubMed ID: 8968578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal glutathione transport in cystic fibrosis airway epithelia.
    Gao L; Kim KJ; Yankaskas JR; Forman HJ
    Am J Physiol; 1999 Jul; 277(1):L113-8. PubMed ID: 10409237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the adenosinetriphosphatase and transport activities of purified cystic fibrosis transmembrane conductance regulator.
    Ketchum CJ; Rajendrakumar GV; Maloney PC
    Biochemistry; 2004 Feb; 43(4):1045-53. PubMed ID: 14744150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [CFTR and ENaC functions in cystic fibrosis].
    Palma AG; Kotsias BA; Marino GI
    Medicina (B Aires); 2014; 74(2):133-9. PubMed ID: 24736260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion conductance selectivity mechanism of the CFTR chloride channel.
    Linsdell P
    Biochim Biophys Acta; 2016 Apr; 1858(4):740-7. PubMed ID: 26779604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation, independent of charge, in the R domain affects cystic fibrosis transmembrane conductance regulator channel openings.
    Xie J; Zhao J; Davis PB; Ma J
    Biophys J; 2000 Mar; 78(3):1293-305. PubMed ID: 10692317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.