These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 9688868)
1. Energy expenditure in children predicted from heart rate and activity calibrated against respiration calorimetry. Treuth MS; Adolph AL; Butte NF Am J Physiol; 1998 Jul; 275(1):E12-8. PubMed ID: 9688868 [TBL] [Abstract][Full Text] [Related]
2. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry. Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594 [TBL] [Abstract][Full Text] [Related]
3. Combined heart rate and activity improve estimates of oxygen consumption and carbon dioxide production rates. Moon JK; Butte NF J Appl Physiol (1985); 1996 Oct; 81(4):1754-61. PubMed ID: 8904596 [TBL] [Abstract][Full Text] [Related]
4. A pocket-sized metabolic analyzer for assessment of resting energy expenditure. Zhao D; Xian X; Terrera M; Krishnan R; Miller D; Bridgeman D; Tao K; Zhang L; Tsow F; Forzani ES; Tao N Clin Nutr; 2014 Apr; 33(2):341-7. PubMed ID: 23827182 [TBL] [Abstract][Full Text] [Related]
5. Use of heart rate to predict energy expenditure from low to high activity levels. Hiilloskorpi HK; Pasanen ME; Fogelholm MG; Laukkanen RM; Mänttäri AT Int J Sports Med; 2003 Jul; 24(5):332-6. PubMed ID: 12868043 [TBL] [Abstract][Full Text] [Related]
6. Assessing sleeping energy expenditure in children using heart-rate monitoring calibrated against open-circuit indirect calorimetry: a pilot study. Beghin L; Michaud L; Guimber D; Vaksmann G; Turck D; Gottrand F Br J Nutr; 2002 Nov; 88(5):533-43. PubMed ID: 12425734 [TBL] [Abstract][Full Text] [Related]
7. The use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetry. Ceesay SM; Prentice AM; Day KC; Murgatroyd PR; Goldberg GR; Scott W; Spurr GB Br J Nutr; 1989 Mar; 61(2):175-86. PubMed ID: 2706223 [TBL] [Abstract][Full Text] [Related]
8. Validity of the simultaneous heart rate-motion sensor technique for measuring energy expenditure. Strath SJ; Bassett DR; Thompson DL; Swartz AM Med Sci Sports Exerc; 2002 May; 34(5):888-94. PubMed ID: 11984311 [TBL] [Abstract][Full Text] [Related]
9. Between-day and within-day variability in the relation between heart rate and oxygen consumption: effect on the estimation of energy expenditure by heart-rate monitoring. McCrory MA; Molé PA; Nommsen-Rivers LA; Dewey KG Am J Clin Nutr; 1997 Jul; 66(1):18-25. PubMed ID: 9209164 [TBL] [Abstract][Full Text] [Related]
10. [Heart rate and physical activity to assess energy expenditure in children]. Filozof CM; González C; Perman M; Salinas R Medicina (B Aires); 1999; 59(6):727-30. PubMed ID: 10752216 [TBL] [Abstract][Full Text] [Related]
11. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Stapel SN; de Grooth HJ; Alimohamad H; Elbers PW; Girbes AR; Weijs PJ; Oudemans-van Straaten HM Crit Care; 2015 Oct; 19():370. PubMed ID: 26494245 [TBL] [Abstract][Full Text] [Related]
12. Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity. de Jonge L; Nguyen T; Smith SR; Zachwieja JJ; Roy HJ; Bray GA Int J Obes Relat Metab Disord; 2001 Jul; 25(7):929-34. PubMed ID: 11443488 [TBL] [Abstract][Full Text] [Related]
13. Implementation of field cardio-respiratory measurements to assess energy expenditure in Arabian endurance horses. Goachet AG; Julliand V Animal; 2015 May; 9(5):787-92. PubMed ID: 25496768 [TBL] [Abstract][Full Text] [Related]
14. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents. Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the accuracy and precision of a new generation indirect calorimeter in canopy dilution mode. Delsoglio M; Dupertuis YM; Oshima T; van der Plas M; Pichard C Clin Nutr; 2020 Jun; 39(6):1927-1934. PubMed ID: 31543335 [TBL] [Abstract][Full Text] [Related]
16. A practical method of estimating energy expenditure during tennis play. Novas AM; Rowbottom DG; Jenkins DG J Sci Med Sport; 2003 Mar; 6(1):40-50. PubMed ID: 12801209 [TBL] [Abstract][Full Text] [Related]
17. Acute effects of a thermogenic nutritional supplement on energy expenditure and cardiovascular function at rest, during low-intensity exercise, and recovery from exercise. Ryan ED; Beck TW; Herda TJ; Smith AE; Walter AA; Stout JR; Cramer JT J Strength Cond Res; 2009 May; 23(3):807-17. PubMed ID: 19387398 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the TriTrac-R3D accelerometer and a self-report activity diary with heart-rate monitoring for the assessment of energy expenditure in children. Rodriguez G; Béghin L; Michaud L; Moreno LA; Turck D; Gottrand F Br J Nutr; 2002 Jun; 87(6):623-31. PubMed ID: 12067433 [TBL] [Abstract][Full Text] [Related]
19. Comparison of oxygen consumption, carbon dioxide production, and resting energy expenditure in premature and full-term infants. Dechert R; Wesley J; Schafer L; LaMond S; Beck T; Coran A; Bartlett RH J Pediatr Surg; 1985 Dec; 20(6):792-8. PubMed ID: 3936913 [TBL] [Abstract][Full Text] [Related]
20. Estimating relative physical workload using heart rate monitoring: a validation by whole-body indirect calorimetry. Garet M; Boudet G; Montaurier C; Vermorel M; Coudert J; Chamoux A Eur J Appl Physiol; 2005 May; 94(1-2):46-53. PubMed ID: 15609030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]