BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 9688914)

  • 21. Inhibition of Na+-H+ exchanger protects diabetic and non-diabetic hearts from ischemic injury: insight into altered susceptibility of diabetic hearts to ischemic injury.
    Ramasamy R; Schaefer S
    J Mol Cell Cardiol; 1999 Apr; 31(4):785-97. PubMed ID: 10329206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose requirement for postischemic recovery of perfused working heart.
    Mallet RT; Hartman DA; Bünger R
    Eur J Biochem; 1990 Mar; 188(2):481-93. PubMed ID: 2318214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism. Implications for diabetic retinopathy.
    Van den Enden MK; Nyengaard JR; Ostrow E; Burgan JH; Williamson JR
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1675-85. PubMed ID: 7601647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nucleotide metabolism in lactate perfused hearts under ischaemic and reperfused conditions.
    de Groot MJ; Coumans WA; van der Vusse GJ
    Mol Cell Biochem; 1992 Dec; 118(1):1-14. PubMed ID: 1488052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts.
    Lopaschuk GD; Wambolt RB; Barr RL
    J Pharmacol Exp Ther; 1993 Jan; 264(1):135-44. PubMed ID: 8380856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of cromakalim and glibenclamide on myocardial high energy phosphates and intracellular pH during ischemia-reperfusion: 31P NMR studies.
    Docherty JC; Gunter HE; Kuzio B; Shoemaker L; Yang L; Deslauriers R
    J Mol Cell Cardiol; 1997 Jun; 29(6):1665-73. PubMed ID: 9220352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of tissue acidosis to ischemic injury in the perfused rat heart.
    Williamson JR; Schaffer SW; Ford C; Safer B
    Circulation; 1976 Mar; 53(3 Suppl):I3-14. PubMed ID: 3293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion.
    Wang P; Fraser H; Lloyd SG; McVeigh JJ; Belardinelli L; Chatham JC
    J Pharmacol Exp Ther; 2007 Apr; 321(1):213-20. PubMed ID: 17202401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ischemic preconditioning: bioenergetic and metabolic changes and the role of endogenous adenosine.
    Headrick JP
    J Mol Cell Cardiol; 1996 Jun; 28(6):1227-40. PubMed ID: 8782064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of high levels of fatty acids on functional recovery of ischemic hearts from diabetic rats.
    Lopaschuk GD; Saddik M; Barr R; Huang L; Barker CC; Muzyka RA
    Am J Physiol; 1992 Dec; 263(6):E1046-53. PubMed ID: 1476176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High dietary sucrose triggers hyperinsulinemia, increases myocardial beta-oxidation, reduces glycolytic flux and delays post-ischemic contractile recovery.
    Gonsolin D; Couturier K; Garait B; Rondel S; Novel-Chaté V; Peltier S; Faure P; Gachon P; Boirie Y; Keriel C; Favier R; Pepe S; Demaison L; Leverve X
    Mol Cell Biochem; 2007 Jan; 295(1-2):217-28. PubMed ID: 16944307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protective effects of the potent Na/H exchange inhibitor methylisobutyl amiloride against post-ischemic contractile dysfunction in rat and guinea-pig hearts.
    Moffat MP; Karmazyn M
    J Mol Cell Cardiol; 1993 Aug; 25(8):959-71. PubMed ID: 8263964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The functional recovery of post-ischemic myocardium requires glycolysis during early reperfusion.
    Jeremy RW; Ambrosio G; Pike MM; Jacobus WE; Becker LC
    J Mol Cell Cardiol; 1993 Mar; 25(3):261-76. PubMed ID: 8510169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acylcarnitine accumulation does not correlate with reperfusion recovery in palmitate-perfused rat hearts.
    Madden MC; Wołkowicz PE; Pohost GM; McMillin JB; Pike MM
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2505-12. PubMed ID: 7611501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. L-carnitine increases glucose metabolism and mechanical function following ischaemia in diabetic rat heart.
    Broderick TL; Quinney HA; Lopaschuk GD
    Cardiovasc Res; 1995 Mar; 29(3):373-8. PubMed ID: 7781011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose metabolism, H+ production and Na+/H+-exchanger mRNA levels in ischemic hearts from diabetic rats.
    Dyck JR; Lopaschuk GD
    Mol Cell Biochem; 1998 Mar; 180(1-2):85-93. PubMed ID: 9546634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyol pathway impairs the function of SERCA and RyR in ischemic-reperfused rat hearts by increasing oxidative modifications of these proteins.
    Tang WH; Kravtsov GM; Sauert M; Tong XY; Hou XY; Wong TM; Chung SK; Man Chung SS
    J Mol Cell Cardiol; 2010 Jul; 49(1):58-69. PubMed ID: 20025885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ischemic preconditioning inhibits glycolysis and proton production in isolated working rat hearts.
    Finegan BA; Lopaschuk GD; Gandhi M; Clanachan AS
    Am J Physiol; 1995 Nov; 269(5 Pt 2):H1767-75. PubMed ID: 7503276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regression of cardiac hypertrophy normalizes glucose metabolism and left ventricular function during reperfusion.
    Wambolt RB; Henning SL; English DR; Bondy GP; Allard MF
    J Mol Cell Cardiol; 1997 Mar; 29(3):939-48. PubMed ID: 9152855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyruvate dehydrogenase influences postischemic heart function.
    Lewandowski ED; White LT
    Circulation; 1995 Apr; 91(7):2071-9. PubMed ID: 7895366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.