These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 9688942)
1. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Warner BB; Stuart LA; Papes RA; Wispé JR Am J Physiol; 1998 Jul; 275(1):L110-7. PubMed ID: 9688942 [TBL] [Abstract][Full Text] [Related]
2. Cumulative effects of neonatal hyperoxia on murine alveolar structure and function. Cox AM; Gao Y; Perl AT; Tepper RS; Ahlfeld SK Pediatr Pulmonol; 2017 May; 52(5):616-624. PubMed ID: 28186703 [TBL] [Abstract][Full Text] [Related]
3. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. Velten M; Heyob KM; Rogers LK; Welty SE J Appl Physiol (1985); 2010 May; 108(5):1347-56. PubMed ID: 20223995 [TBL] [Abstract][Full Text] [Related]
4. Hepatocyte growth factor treatment improves alveolarization in a newborn murine model of bronchopulmonary dysplasia. Ohki Y; Mayuzumi H; Tokuyama K; Yoshizawa Y; Arakawa H; Mochizuki H; Morikawa A Neonatology; 2009; 95(4):332-8. PubMed ID: 19122464 [TBL] [Abstract][Full Text] [Related]
5. Sex-related differences in long-term pulmonary outcomes of neonatal hyperoxia in mice. Namba F; Ogawa R; Ito M; Watanabe T; Dennery PA; Tamura M Exp Lung Res; 2016; 42(2):57-65. PubMed ID: 27070483 [TBL] [Abstract][Full Text] [Related]
6. Genome-Wide Analysis of DNA Methylation in Hyperoxia-Exposed Newborn Rat Lung. Chen CM; Liu YC; Chen YJ; Chou HC Lung; 2017 Oct; 195(5):661-669. PubMed ID: 28689251 [TBL] [Abstract][Full Text] [Related]
7. Hypoxic stress exacerbates hyperoxia-induced lung injury in a neonatal mouse model of bronchopulmonary dysplasia. Ratner V; Slinko S; Utkina-Sosunova I; Starkov A; Polin RA; Ten VS Neonatology; 2009; 95(4):299-305. PubMed ID: 19052476 [TBL] [Abstract][Full Text] [Related]
8. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication. Bozyk PD; Bentley JK; Popova AP; Anyanwu AC; Linn MD; Goldsmith AM; Pryhuber GS; Moore BB; Hershenson MB PLoS One; 2012; 7(2):e31336. PubMed ID: 22363622 [TBL] [Abstract][Full Text] [Related]
9. Altered small airways in aged mice following neonatal exposure to hyperoxic gas. O'Reilly M; Harding R; Sozo F Neonatology; 2014; 105(1):39-45. PubMed ID: 24281398 [TBL] [Abstract][Full Text] [Related]
10. [Anti-inflammatory effects of erythropoietin on hyperoxia-induced bronchopulmonary dysplasia in newborn rats]. Wang XL; Xue XD Zhonghua Er Ke Za Zhi; 2009 Jun; 47(6):446-51. PubMed ID: 19951473 [TBL] [Abstract][Full Text] [Related]
11. Interleukin-33 (IL-33) Increases Hyperoxia-Induced Bronchopulmonary Dysplasia in Newborn Mice by Regulation of Inflammatory Mediators. Tang X Med Sci Monit; 2018 Sep; 24():6717-6728. PubMed ID: 30244258 [TBL] [Abstract][Full Text] [Related]
12. Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury. Hirakawa H; Pierce RA; Bingol-Karakoc G; Karaaslan C; Weng M; Shi GP; Saad A; Weber E; Mariani TJ; Starcher B; Shapiro SD; Cataltepe S Am J Respir Crit Care Med; 2007 Oct; 176(8):778-85. PubMed ID: 17673697 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia. Alapati D; Rong M; Chen S; Hehre D; Hummler SC; Wu S Am J Respir Cell Mol Biol; 2014 Jul; 51(1):104-13. PubMed ID: 24484510 [TBL] [Abstract][Full Text] [Related]
14. Gelsolin Attenuates Neonatal Hyperoxia-Induced Inflammatory Responses to Rhinovirus Infection and Preserves Alveolarization. Cui TX; Brady AE; Zhang YJ; Fulton CT; Popova AP Front Immunol; 2022; 13():792716. PubMed ID: 35173718 [TBL] [Abstract][Full Text] [Related]
15. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia. Popova AP; Bentley JK; Cui TX; Richardson MN; Linn MJ; Lei J; Chen Q; Goldsmith AM; Pryhuber GS; Hershenson MB Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L231-9. PubMed ID: 24907056 [TBL] [Abstract][Full Text] [Related]
16. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Alejandre-Alcázar MA; Kwapiszewska G; Reiss I; Amarie OV; Marsh LM; Sevilla-Pérez J; Wygrecka M; Eul B; Köbrich S; Hesse M; Schermuly RT; Seeger W; Eickelberg O; Morty RE Am J Physiol Lung Cell Mol Physiol; 2007 Feb; 292(2):L537-49. PubMed ID: 17071723 [TBL] [Abstract][Full Text] [Related]
17. Neonatal hyperoxia causes pulmonary vascular disease and shortens life span in aging mice. Yee M; White RJ; Awad HA; Bates WA; McGrath-Morrow SA; O'Reilly MA Am J Pathol; 2011 Jun; 178(6):2601-10. PubMed ID: 21550015 [TBL] [Abstract][Full Text] [Related]
18. Systemic hydrogen sulfide administration partially restores normal alveolarization in an experimental animal model of bronchopulmonary dysplasia. Madurga A; Mižíková I; Ruiz-Camp J; Vadász I; Herold S; Mayer K; Fehrenbach H; Seeger W; Morty RE Am J Physiol Lung Cell Mol Physiol; 2014 Apr; 306(7):L684-97. PubMed ID: 24508731 [TBL] [Abstract][Full Text] [Related]
19. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Balasubramaniam V; Mervis CF; Maxey AM; Markham NE; Abman SH Am J Physiol Lung Cell Mol Physiol; 2007 May; 292(5):L1073-84. PubMed ID: 17209139 [TBL] [Abstract][Full Text] [Related]
20. Treatment with Geranylgeranylacetone Induces Heat Shock Protein 70 and Attenuates Neonatal Hyperoxic Lung Injury in a Model of Bronchopulmonary Dysplasia. Tokuriki S; Igarashi A; Okuno T; Ohta G; Naiki H; Ohshima Y Lung; 2017 Aug; 195(4):469-476. PubMed ID: 28447205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]