These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 9689451)

  • 21. Medial amygdaloid suppression of predatory attack behavior in the cat: I Role of a substance P pathway from the medial amygdala to the medial hypothalamus.
    Han Y; Shaikh MB; Siegel A
    Brain Res; 1996 Apr; 716(1-2):59-71. PubMed ID: 8738221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurotransmitters regulating defensive rage behavior in the cat.
    Siegel A; Schubert KL; Shaikh MB
    Neurosci Biobehav Rev; 1997 Nov; 21(6):733-42. PubMed ID: 9415898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ethanol enhances medial amygdaloid induced inhibition of predatory attack behaviour in the cat: role of GABAA receptors in the lateral hypothalamus.
    Han Y; Shaikh MB; Siegel A
    Alcohol Alcohol; 1997; 32(6):657-70. PubMed ID: 9463720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuroanatomical and neurochemical mechanisms underlying amygdaloid control of defensive rage behavior in the cat.
    Shaikh MB; Siegel A
    Braz J Med Biol Res; 1994 Dec; 27(12):2759-79. PubMed ID: 7549999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The neurobiology of aggression and rage: role of cytokines.
    Zalcman SS; Siegel A
    Brain Behav Immun; 2006 Nov; 20(6):507-14. PubMed ID: 16938427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential effects of cholecystokinin (CCK-8) microinjection into the ventrolateral and dorsolateral periaqueductal gray on anxiety models in Wistar rats.
    Vázquez-León P; Campos-Rodríguez C; Gonzalez-Pliego C; Miranda-Páez A
    Horm Behav; 2018 Nov; 106():105-111. PubMed ID: 30342011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anxiogenic effect of cholecystokinin in the dorsal periaqueductal gray.
    Netto CF; Guimarães FS
    Neuropsychopharmacology; 2004 Jan; 29(1):101-7. PubMed ID: 14583742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of dorsolateral periaqueductal gray cholecystokinin-2 receptors in the regulation of a panic-related behavior in rats.
    Bertoglio LJ; Zangrossi H
    Brain Res; 2005 Oct; 1059(1):46-51. PubMed ID: 16168394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat.
    Bandler R; Carrive P
    Brain Res; 1988 Jan; 439(1-2):95-106. PubMed ID: 3359200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neurotransmitters regulating feline aggressive behavior.
    Siegel A; Schubert K
    Rev Neurosci; 1995; 6(1):47-61. PubMed ID: 7633640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lack of interaction between NMDA and cholecystokinin-2 receptor-mediated neurotransmission in the dorsolateral periaqueductal gray in the regulation of rat defensive behaviors.
    Bertoglio LJ; Guimarães FS; Zangrossi H
    Life Sci; 2006 Nov; 79(23):2238-44. PubMed ID: 16914165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GABA-mediated regulation of feline aggression elicited from midbrain periaqueductal gray.
    Shaikh MB; Siegel A
    Brain Res; 1990 Jan; 507(1):51-6. PubMed ID: 2302579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray.
    Vanderhorst VG; Mouton LJ; Blok BF; Holstege G
    J Comp Neurol; 1996 Dec; 376(3):361-85. PubMed ID: 8956105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anxiogenic-like effects induced by NMDA receptor activation are prevented by inhibition of neuronal nitric oxide synthase in the periaqueductal gray in mice.
    Miguel TT; Nunes-de-Souza RL
    Brain Res; 2008 Nov; 1240():39-46. PubMed ID: 18793618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Periaqueductal gray cholecystokinin infusions block morphine-induced disruption of maternal behavior.
    Miranda-Paiva CM; Canteras NS; Sukikara MH; Nasello AG; Mackowiak II; Felicio LF
    Peptides; 2007 Mar; 28(3):657-62. PubMed ID: 17194502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predatory aggression induced by hypothalamic stimulation: modulation by midbrain periaqueductal gray (PAG).
    Manchanda SK; Poddar A; Saha S; Bhatia SC; Kumar VM; Nayar U
    Neurobiology (Bp); 1995; 3(3-4):405-17. PubMed ID: 8696308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the effect of cholecystokinin (CCK) on neurons in the periaqueductal gray of the rat: immunocytochemical and in vivo and in vitro electrophysiological studies.
    Liu H; Chandler S; Beitz AJ; Shipley MT; Behbehani MM
    Brain Res; 1994 Apr; 642(1-2):83-94. PubMed ID: 8032904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of pretentorial periaqueductal gray matter neurons mediating intraspecific defensive behaviors in the rat by microinjections of kainic acid.
    Depaulis A; Bandler R; Vergnes M
    Brain Res; 1989 May; 486(1):121-32. PubMed ID: 2720424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Longitudinal neuronal organization of defensive reactions in the midbrain periaqueductal gray region of the rat.
    Depaulis A; Keay KA; Bandler R
    Exp Brain Res; 1992; 90(2):307-18. PubMed ID: 1397145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Affective defense behavior elicited from the feline midbrain periqueductal gray is regulated by mu and delta opioid receptors.
    Shaikh MB; Lu CL; Siegel A
    Brain Res; 1991 Aug; 557(1-2):344-8. PubMed ID: 1660757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.