These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 9689480)
1. Failure to down regulate NMDA receptors in the striatum and nucleus accumbens associated with neuroleptic-induced dyskinesia. Hamid EH; Hyde TM; Baca SM; Egan MF Brain Res; 1998 Jun; 796(1-2):291-5. PubMed ID: 9689480 [TBL] [Abstract][Full Text] [Related]
2. Glutamatergic regulation of haloperidol-induced c-fos expression in the rat striatum and nucleus accumbens. Hussain N; Flumerfelt BA; Rajakumar N Neuroscience; 2001; 102(2):391-9. PubMed ID: 11166125 [TBL] [Abstract][Full Text] [Related]
3. Excitatory mechanisms in neuroleptic-induced vacuous chewing movements (VCMs): possible involvement of calcium and nitric oxide. Naidu PS; Kulkarni SK Behav Pharmacol; 2001 Jun; 12(3):209-16. PubMed ID: 11485057 [TBL] [Abstract][Full Text] [Related]
4. The relationship between dopamine D2 receptor occupancy and the vacuous chewing movement syndrome in rats. Turrone P; Remington G; Kapur S; Nobrega JN Psychopharmacology (Berl); 2003 Jan; 165(2):166-71. PubMed ID: 12417967 [TBL] [Abstract][Full Text] [Related]
5. Role of NR2B-containing N-methyl-D-aspartate receptors in haloperidol-induced c-Fos expression in the striatum and nucleus accumbens. Lee J; Rajakumar N Neuroscience; 2003; 122(3):739-45. PubMed ID: 14622917 [TBL] [Abstract][Full Text] [Related]
6. Pharmacological and neurochemical differences between acute and tardive vacuous chewing movements induced by haloperidol. Egan MF; Hurd Y; Ferguson J; Bachus SE; Hamid EH; Hyde TM Psychopharmacology (Berl); 1996 Oct; 127(4):337-45. PubMed ID: 8923569 [TBL] [Abstract][Full Text] [Related]
7. Alterations in mRNA levels of D2 receptors and neuropeptides in striatonigral and striatopallidal neurons of rats with neuroleptic-induced dyskinesias. Egan MF; Hurd Y; Hyde TM; Weinberger DR; Wyatt RJ; Kleinman JE Synapse; 1994 Nov; 18(3):178-89. PubMed ID: 7531873 [TBL] [Abstract][Full Text] [Related]
8. Autoradiographic mapping of mu opioid receptor changes in rat brain after long-term haloperidol treatment: relationship to the development of vacuous chewing movements. Sasaki T; Kennedy JL; Nobrega JN Psychopharmacology (Berl); 1996 Nov; 128(1):97-104. PubMed ID: 8944412 [TBL] [Abstract][Full Text] [Related]
9. Correlation of vacuous chewing movements with morphological changes in rats following 1-year treatment with haloperidol. Meshul CK; Andreassen OA; Allen C; Jørgensen HA Psychopharmacology (Berl); 1996 Jun; 125(3):238-47. PubMed ID: 8815959 [TBL] [Abstract][Full Text] [Related]
10. Persistent alterations in dendrites, spines, and dynorphinergic synapses in the nucleus accumbens shell of rats with neuroleptic-induced dyskinesias. Meredith GE; De Souza IE; Hyde TM; Tipper G; Wong ML; Egan MF J Neurosci; 2000 Oct; 20(20):7798-806. PubMed ID: 11027244 [TBL] [Abstract][Full Text] [Related]
11. Memantine attenuates the increase in striatal preproenkephalin mRNA expression and development of haloperidol-induced persistent oral dyskinesias in rats. Andreassen OA; Waage J; Finsen B; Jørgensen HA Brain Res; 2003 Dec; 994(2):188-92. PubMed ID: 14642644 [TBL] [Abstract][Full Text] [Related]
12. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia. Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862 [TBL] [Abstract][Full Text] [Related]
13. Modulatory effect of neurosteroids in haloperidol-induced vacuous chewing movements and related behaviors. Bishnoi M; Chopra K; Kulkarni SK Psychopharmacology (Berl); 2008 Feb; 196(2):243-54. PubMed ID: 17955214 [TBL] [Abstract][Full Text] [Related]
14. Oral dyskinesias and morphological changes in rat striatum during long-term haloperidol administration. Andreassen OA; Meshul CK; Moore C; Jørgensen HA Psychopharmacology (Berl); 2001 Aug; 157(1):11-9. PubMed ID: 11512038 [TBL] [Abstract][Full Text] [Related]
15. Differential effects of antipsychotics on haloperidol-induced vacuous chewing movements and subcortical gene expression in the rat. McCullumsmith RE; Stincic TL; Agrawal SM; Meador-Woodruff JH Eur J Pharmacol; 2003 Sep; 477(2):101-12. PubMed ID: 14519413 [TBL] [Abstract][Full Text] [Related]
16. Ultrastructural correlates of haloperidol-induced oral dyskinesias in rat striatum. Roberts RC; Gaither LA; Gao XM; Kashyap SM; Tamminga CA Synapse; 1995 Jul; 20(3):234-43. PubMed ID: 7570355 [TBL] [Abstract][Full Text] [Related]
17. Effects of N-methyl-D-aspartate receptor antagonism on neuroleptic-induced orofacial dyskinesias. Konitsiotis S; Tsironis C; Kiortsis DN; Evangelou A Psychopharmacology (Berl); 2006 Apr; 185(3):369-77. PubMed ID: 16518645 [TBL] [Abstract][Full Text] [Related]
18. The effect of chronic haloperidol treatment on dendritic spines in the rat striatum. Kelley JJ; Gao XM; Tamminga CA; Roberts RC Exp Neurol; 1997 Aug; 146(2):471-8. PubMed ID: 9270058 [TBL] [Abstract][Full Text] [Related]
19. Protective role of endocannabinoid signaling in an animal model of haloperidol-induced tardive dyskinesia. Röpke J; Ferreira-Vieira TH; Iglesias LP; Asth L; Ribeiro FM; Moreira FA Pharmacol Biochem Behav; 2021 Jul; 206():173193. PubMed ID: 33933537 [TBL] [Abstract][Full Text] [Related]
20. Anandamide attenuates haloperidol-induced vacuous chewing movements in rats. Röpke J; Busanello A; Leal CQ; de Moraes Reis E; de Freitas CM; Villarinho JG; Figueira FH; Mello CF; Ferreira J; Fachinetto R Prog Neuropsychopharmacol Biol Psychiatry; 2014 Oct; 54():195-9. PubMed ID: 24747871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]