These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 9689538)

  • 21. Process and formulation variables in the preparation of wax microparticles by a melt dispersion technique. II. W/O/W multiple emulsion technique for water-soluble drugs.
    Bodmeier R; Wang J; Bhagwatwar H
    J Microencapsul; 1992; 9(1):99-107. PubMed ID: 1613649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of encapsulation efficiency in polymeric microparticle system of tolmetin.
    Jelvehgari M; Valizadeh H; Rezapour M; Nokhodchi A
    Pharm Dev Technol; 2010; 15(1):71-9. PubMed ID: 19505209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly (D,L-lactide-co-glycolide) microspheres for long-term intravitreal delivery of aciclovir: influence of fatty and non-fatty additives.
    Martínez-Sancho C; Herrero-Vanrell R; Negro S
    J Microencapsul; 2003; 20(6):799-810. PubMed ID: 14594668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple method for the preparation of monodisperse protein-loaded microspheres with high encapsulation efficiencies.
    Cheng X; Liu R; He Y
    Eur J Pharm Biopharm; 2010 Nov; 76(3):336-41. PubMed ID: 20691263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Encapsulation of water-soluble drugs by an o/o/o-solvent extraction microencapsulation method.
    Elkharraz K; Ahmed AR; Dashevsky A; Bodmeier R
    Int J Pharm; 2011 May; 409(1-2):89-95. PubMed ID: 21356287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro ciprofloxacin release from poly(lactide-co-glycolide) microspheres.
    Martinez B; Lairion F; Pena MB; Di Rocco P; Nacucchio MC
    J Microencapsul; 1997; 14(2):155-61. PubMed ID: 9132467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The development of colour-encapsulated microspheres for novel colour cosmetics.
    Jones SR; Grey BD; Mistry KK; Wildgust PG
    J Microencapsul; 2009 Jun; 26(4):325-33. PubMed ID: 18686145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasonic atomization and subsequent polymer desolvation for peptide and protein microencapsulation into biodegradable polyesters.
    Felder ChB; Blanco-Príeto MJ; Heizmann J; Merkle HP; Gander B
    J Microencapsul; 2003; 20(5):553-67. PubMed ID: 12909541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonhalogenated solvent-based solvent evaporation process useful in preparation of PLGA microspheres.
    Jang J; Sah H
    J Microencapsul; 2011; 28(6):490-8. PubMed ID: 21827356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new method of preparing TRH derivative-loaded poly(dl-lactide-coglycolide) microspheres based on a solid solution system.
    Matsumoto A; Matsukawa Y; Nishioka Y; Harada M; Horikiri Y; Yamahara H
    Drug Discov Ther; 2008 Feb; 2(1):45-51. PubMed ID: 22504454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres.
    Vay K; Scheler S; Friess W
    Int J Pharm; 2011 Sep; 416(1):202-9. PubMed ID: 21745557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation on structural integrity of PLGA during ammonolysis-based microencapsulation process.
    Heo S; Lee M; Lee S; Sah H
    Int J Pharm; 2011 Oct; 419(1-2):60-70. PubMed ID: 21839820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microparticle formation and its mechanism in single and double emulsion solvent evaporation.
    Rosca ID; Watari F; Uo M
    J Control Release; 2004 Sep; 99(2):271-80. PubMed ID: 15380636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic changes in size distribution of emulsion droplets during ethyl acetate-based microencapsulation process.
    Bahl Y; Sah H
    AAPS PharmSciTech; 2000 Mar; 1(1):E5. PubMed ID: 14727854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Encapsulation of immunoglobulin G by solid-in-oil-in-water: effect of process parameters on microsphere properties.
    Marquette S; Peerboom C; Yates A; Denis L; Goole J; Amighi K
    Eur J Pharm Biopharm; 2014 Apr; 86(3):393-403. PubMed ID: 24184674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ethyl formate - alternative dispersed solvent useful in preparing PLGA microspheres.
    Sah H
    Int J Pharm; 2000 Feb; 195(1-2):103-13. PubMed ID: 10675688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of polymeric microspheres by the solvent evaporation method using sucrose stearate as a droplet stabilizer.
    Yüksel N; Baykara T
    J Microencapsul; 1997; 14(6):725-33. PubMed ID: 9394253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term release of clodronate from biodegradable microspheres.
    Perugini P; Genta I; Conti B; Modena T; Pavanetto F
    AAPS PharmSciTech; 2001 Jul; 2(3):E10. PubMed ID: 14727869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Importance of single or blended polymer types for controlled in vitro release and plasma levels of a somatostatin analogue entrapped in PLA/PLGA microspheres.
    Blanco-Príeto MJ; Campanero MA; Besseghir K; Heimgatner F; Gander B
    J Control Release; 2004 May; 96(3):437-48. PubMed ID: 15120900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of the encapsulation efficiency of oligonucleotide-containing biodegradable microspheres.
    Freytag T; Dashevsky A; Tillman L; Hardee GE; Bodmeier R
    J Control Release; 2000 Oct; 69(1):197-207. PubMed ID: 11018557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.