BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9690032)

  • 1. Master genes for bone growth, 1,25-dihydroxyvitamin D3 synthesis, and renal conservation of phosphate and calcium.
    Silver J; Drüeke TB
    Curr Opin Nephrol Hypertens; 1998 Jul; 7(4):359-61. PubMed ID: 9690032
    [No Abstract]   [Full Text] [Related]  

  • 2. IGF-I and GH stimulate Phex mRNA expression in lungs and bones and 1,25-dihydroxyvitamin D(3) production in hypophysectomized rats.
    Zoidis E; Gosteli-Peter M; Ghirlanda-Keller C; Meinel L; Zapf J; Schmid C
    Eur J Endocrinol; 2002 Jan; 146(1):97-105. PubMed ID: 11751074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Janus kinase 3 regulates renal 25-hydroxyvitamin D 1α-hydroxylase expression, calcitriol formation, and phosphate metabolism.
    Umbach AT; Zhang B; Daniel C; Fajol A; Velic A; Hosseinzadeh Z; Bhavsar SK; Bock CT; Kandolf R; Pichler BJ; Amann KU; Föller M; Lang F
    Kidney Int; 2015 Apr; 87(4):728-37. PubMed ID: 25493954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of 1,25-dihydroxyvitamin D
    Nishikawa M; Yasuda K; Takamatsu M; Abe K; Nakagawa K; Tsugawa N; Hirota Y; Tanaka K; Yamashita S; Ikushiro S; Suda T; Okano T; Sakaki T
    J Steroid Biochem Mol Biol; 2019 Jan; 185():71-79. PubMed ID: 30031146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis.
    Takeyama K; Kitanaka S; Sato T; Kobori M; Yanagisawa J; Kato S
    Science; 1997 Sep; 277(5333):1827-30. PubMed ID: 9295274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice.
    Chow EC; Quach HP; Vieth R; Pang KS
    Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of short-term insulin-like growth factor-I or growth hormone treatment on bone turnover, renal phosphate reabsorption and 1,25 dihydroxyvitamin D3 production in healthy man.
    Bianda T; Hussain MA; Glatz Y; Bouillon R; Froesch ER; Schmid C
    J Intern Med; 1997 Feb; 241(2):143-50. PubMed ID: 9077371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice.
    Hoenderop JG; Dardenne O; Van Abel M; Van Der Kemp AW; Van Os CH; St -Arnaud R; Bindels RJ
    FASEB J; 2002 Sep; 16(11):1398-406. PubMed ID: 12205031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in a transformed human proximal tubule cell line: evidence for direct regulation of vitamin D metabolism by calcium.
    Bland R; Walker EA; Hughes SV; Stewart PM; Hewison M
    Endocrinology; 1999 May; 140(5):2027-34. PubMed ID: 10218951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. JAK3 talks down to renal 25-hydroxyvitamin D 1α-hydroxylase.
    White JH
    Kidney Int; 2015 Apr; 87(4):678-9. PubMed ID: 25826541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1alpha-hydroxylase and parathyroid hormone null alleles.
    Xue Y; Karaplis AC; Hendy GN; Goltzman D; Miao D
    Endocrinology; 2006 Oct; 147(10):4801-10. PubMed ID: 16857747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal mechanisms of calcium homeostasis in sheep and goats.
    Herm G; Muscher-Banse AS; Breves G; Schröder B; Wilkens MR
    J Anim Sci; 2015 Apr; 93(4):1608-21. PubMed ID: 26020183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice.
    Kaufmann M; Lee SM; Pike JW; Jones G
    Endocrinology; 2015 Dec; 156(12):4388-97. PubMed ID: 26441239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased 1,25-dihydroxyvitamin D3 synthesis in rats fed a high-phosphorus diet.
    Siu GM; Draper HH
    Calcif Tissue Int; 1981; 33(6):667-72. PubMed ID: 6799177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normal regulation of calcitriol production in Gy mice. Evidence for biochemical heterogeneity in the X-linked hypophosphatemic diseases.
    Davidai GA; Nesbitt T; Drezner MK
    J Clin Invest; 1990 Feb; 85(2):334-9. PubMed ID: 2153705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of 1,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3 in the hypocalcaemic rat.
    Tanaka Y; DeLuca HF
    Biochem J; 1983 Sep; 214(3):893-7. PubMed ID: 6312966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent.
    Berndt T; Craig TA; Bowe AE; Vassiliadis J; Reczek D; Finnegan R; Jan De Beur SM; Schiavi SC; Kumar R
    J Clin Invest; 2003 Sep; 112(5):785-94. PubMed ID: 12952927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin D activities and metabolic bone disease.
    Ryan JW; Anderson PH; Turner AG; Morris HA
    Clin Chim Acta; 2013 Oct; 425():148-52. PubMed ID: 23911750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leptin corrects increased gene expression of renal 25-hydroxyvitamin D3-1 alpha-hydroxylase and -24-hydroxylase in leptin-deficient, ob/ob mice.
    Matsunuma A; Kawane T; Maeda T; Hamada S; Horiuchi N
    Endocrinology; 2004 Mar; 145(3):1367-75. PubMed ID: 14657008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin D actions to regulate calcium and skeletal homeostasis.
    Anderson PH; Turner AG; Morris HA
    Clin Biochem; 2012 Aug; 45(12):880-6. PubMed ID: 22414785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.