BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 9690035)

  • 21. Renal and hepatic 1 alpha-hydroxylation of 25-hydroxyvitamin D3 in piglets suffering from pseudo vitamin D-deficiency rickets, type I.
    Axén E; Harmeyer J; Wikvall K
    Biochim Biophys Acta; 1998 Sep; 1407(3):234-42. PubMed ID: 9748599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The function of vitamin D receptor in vitamin D action.
    Kato S
    J Biochem; 2000 May; 127(5):717-22. PubMed ID: 10788778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The molecular basis of vitamin D-dependent rickets type I.
    Kitanaka S; Takeyama K; Murayama A; Kato S
    Endocr J; 2001 Aug; 48(4):427-32. PubMed ID: 11603564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constitutive expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in a transformed human proximal tubule cell line: evidence for direct regulation of vitamin D metabolism by calcium.
    Bland R; Walker EA; Hughes SV; Stewart PM; Hewison M
    Endocrinology; 1999 May; 140(5):2027-34. PubMed ID: 10218951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning of human 25-hydroxyvitamin D-1 alpha-hydroxylase and mutations causing vitamin D-dependent rickets type 1.
    Fu GK; Lin D; Zhang MY; Bikle DD; Shackleton CH; Miller WL; Portale AA
    Mol Endocrinol; 1997 Dec; 11(13):1961-70. PubMed ID: 9415400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered pharmacokinetics of 1alpha,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24a1) null mouse.
    Masuda S; Byford V; Arabian A; Sakai Y; Demay MB; St-Arnaud R; Jones G
    Endocrinology; 2005 Feb; 146(2):825-34. PubMed ID: 15498883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice.
    Kaufmann M; Lee SM; Pike JW; Jones G
    Endocrinology; 2015 Dec; 156(12):4388-97. PubMed ID: 26441239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The many faces of rickets.
    Bouillon R
    N Engl J Med; 1998 Mar; 338(10):681-2. PubMed ID: 9487000
    [No Abstract]   [Full Text] [Related]  

  • 29. Impaired stimulation of 25-hydroxyvitamin D-24-hydroxylase in fibroblasts from a patient with vitamin D-dependent rickets, type II. A form of receptor-positive resistance to 1,25-dihydroxyvitamin D3.
    Griffin JE; Zerwekh JE
    J Clin Invest; 1983 Oct; 72(4):1190-9. PubMed ID: 6313754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic disorders and defects in vitamin d action.
    Malloy PJ; Feldman D
    Endocrinol Metab Clin North Am; 2010 Jun; 39(2):333-46, table of contents. PubMed ID: 20511055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nutritional rickets: vitamin D, calcium, and the genetic make-up.
    El Kholy M; Elsedfy H; Fernández-Cancio M; Hamza RT; Amr NH; Ahmed AY; Toaima NN; Audí L
    Pediatr Res; 2017 Feb; 81(2):356-363. PubMed ID: 27973470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis.
    Takeyama K; Kitanaka S; Sato T; Kobori M; Yanagisawa J; Kato S
    Science; 1997 Sep; 277(5333):1827-30. PubMed ID: 9295274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular cloning of (25-OH D)-1 alpha-hydroxylase: an approach to the understanding of vitamin D pseudo-deficiency.
    Glorieux FH; St-Arnaud R
    Recent Prog Horm Res; 1998; 53():341-9; discussion 350. PubMed ID: 9769714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The vitamin D receptor in the proximal renal tubule is a key regulator of serum 1α,25-dihydroxyvitamin D₃.
    Wang Y; Zhu J; DeLuca HF
    Am J Physiol Endocrinol Metab; 2015 Feb; 308(3):E201-5. PubMed ID: 25425001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activity of renal 25-hydroxyvitamin D3-1 alpha-hydroxylase in a case of X-linked hypophosphataemic rickets.
    Seino Y; Satomura K; Yamaoka K; Tanaka Y; Tanaka H; Yamamoto T; Ishida M; Yabuuchi H
    Eur J Pediatr; 1984 Aug; 142(3):219-22. PubMed ID: 6540679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical and genetic analysis of patients with vitamin D-dependent rickets type 1A.
    Durmaz E; Zou M; Al-Rijjal RA; Bircan I; Akçurin S; Meyer B; Shi Y
    Clin Endocrinol (Oxf); 2012 Sep; 77(3):363-9. PubMed ID: 22443290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice.
    Chow EC; Quach HP; Vieth R; Pang KS
    Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The vitamin D hormone and its nuclear receptor: molecular actions and disease states.
    Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK
    J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vitamin D-dependent hereditary rickets type I in a cat.
    Geisen V; Weber K; Hartmann K
    J Vet Intern Med; 2009; 23(1):196-9. PubMed ID: 19138382
    [No Abstract]   [Full Text] [Related]  

  • 40. Normal 24-hydroxylation of vitamin D metabolites in patients with vitamin D-dependency rickets type I. Structural implications for the vitamin D hydroxylases.
    Mandla S; Jones G; Tenenhouse HS
    J Clin Endocrinol Metab; 1992 Apr; 74(4):814-20. PubMed ID: 1548347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.