These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9690652)

  • 1. Strategies that ruminal bacteria use to handle excess carbohydrate.
    Russell JB
    J Anim Sci; 1998 Jul; 76(7):1955-63. PubMed ID: 9690652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of amino nitrogen on the energetics of ruminal bacteria and its impact on energy spilling.
    Van Kessel JS; Russell JB
    J Dairy Sci; 1996 Jul; 79(7):1237-43. PubMed ID: 8872717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient transport by ruminal bacteria: a review.
    Martin SA
    J Anim Sci; 1994 Nov; 72(11):3019-31. PubMed ID: 7730197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation.
    Russell JB; O'Connor JD; Fox DG; Van Soest PJ; Sniffen CJ
    J Anim Sci; 1992 Nov; 70(11):3551-61. PubMed ID: 1459918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecology, metabolism, and genetics of ruminal selenomonads.
    Ricke SC; Martin SA; Nisbet DJ
    Crit Rev Microbiol; 1996; 22(1):27-56. PubMed ID: 8729959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of cellobiose, glucose, and cellulose on the survival of Fibrobacter succinogenes A3C cultures grown under ammonia limitation.
    Thomas S; Russell JB
    Curr Microbiol; 2004 Mar; 48(3):219-23. PubMed ID: 15057469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of dietary protein and carbohydrate sources on nitrogen metabolism and carbohydrate fermentation by ruminal microbes in continuous culture.
    Hussein HS; Stern MD; Jordan RM
    J Anim Sci; 1991 May; 69(5):2123-33. PubMed ID: 2066323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruminal protein metabolism and intestinal amino acid utilization as affected by dietary protein and carbohydrate sources in sheep.
    Hussein HS; Jordan RM; Stern MD
    J Anim Sci; 1991 May; 69(5):2134-46. PubMed ID: 1648551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate.
    Teixeira CRV; Lana RP; Tao J; Hackmann TJ
    FEMS Microbiol Ecol; 2017 Jun; 93(6):. PubMed ID: 28486619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of non-fibrous carbohydrate and degradable intake protein on fermentation by ruminal microorganisms in continuous culture.
    Mansfield HR; Endres MI; Stern MD
    J Anim Sci; 1994 Sep; 72(9):2464-74. PubMed ID: 8002466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo synthesis of amino acids by the ruminal bacteria Prevotella bryantii B14, Selenomonas ruminantium HD4, and Streptococcus bovis ES1.
    Atasoglu C; Valdés C; Walker ND; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 1998 Aug; 64(8):2836-43. PubMed ID: 9687438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The endogenous polysaccharide utilization rate of mixed ruminal bacteria and the effect of energy starvation on ruminal fermentation rates.
    Van Kessel JS; Russell JB
    J Dairy Sci; 1997 Oct; 80(10):2442-8. PubMed ID: 9361216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85.
    Matte A; Forsberg CW; Verrinder Gibbins AM
    Can J Microbiol; 1992 May; 38(5):370-6. PubMed ID: 1643581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dietary carbohydrate composition and availability on utilization of ruminal ammonia nitrogen for milk protein synthesis in dairy cows.
    Hristov AN; Ropp JK
    J Dairy Sci; 2003 Jul; 86(7):2416-27. PubMed ID: 12906060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17.
    Atasoglu C; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2001 Jun; 67(6):2819-22. PubMed ID: 11375199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation of nitrogen isotopes by mixed ruminal bacteria.
    Wattiaux MA; Reed JD
    J Anim Sci; 1995 Jan; 73(1):257-66. PubMed ID: 7601742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opportunities to enhance performance and efficiency through nutrient synchrony in concentrate-fed ruminants.
    Cole NA; Todd RW
    J Anim Sci; 2008 Apr; 86(14 Suppl):E318-33. PubMed ID: 17940155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes.
    Hall MB; Weimer PJ
    J Dairy Sci; 2016 Jan; 99(1):245-57. PubMed ID: 26601577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why do many ruminal bacteria die and lyse so quickly?
    Wells JE; Russell JB
    J Dairy Sci; 1996 Aug; 79(8):1487-95. PubMed ID: 8880474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.