These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 9690652)
21. Biochemical and genetic diversity of carbohydrate-fermenting and obligate amino acid-fermenting hyper-ammonia-producing bacteria from Nellore steers fed tropical forages and supplemented with casein. Bento CB; de Azevedo AC; Detmann E; Mantovani HC BMC Microbiol; 2015 Feb; 15():28. PubMed ID: 25888186 [TBL] [Abstract][Full Text] [Related]
22. Effects of type of carbohydrate supplementation to lush pasture on microbial fermentation in continuous culture. Bach A; Yoon IK; Stern MD; Jung HG; Chester-Jones H J Dairy Sci; 1999 Jan; 82(1):153-60. PubMed ID: 10022017 [TBL] [Abstract][Full Text] [Related]
23. Biotransformation of 2,4,6-trinitrotoluene by pure culture ruminal bacteria. De Lorme M; Craig M Curr Microbiol; 2009 Jan; 58(1):81-6. PubMed ID: 18839246 [TBL] [Abstract][Full Text] [Related]
24. Balancing carbohydrates and proteins for optimum rumen microbial yield. Hoover WH; Stokes SR J Dairy Sci; 1991 Oct; 74(10):3630-44. PubMed ID: 1744285 [TBL] [Abstract][Full Text] [Related]
25. Stimulatory and inhibitory effects of protein amino acids on growth rate and efficiency of mixed ruminal bacteria. Kajikawa H; Mitsumori M; Ohmomo S J Dairy Sci; 2002 Aug; 85(8):2015-22. PubMed ID: 12214994 [TBL] [Abstract][Full Text] [Related]
26. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Scheifinger CC; Wolin MJ Appl Microbiol; 1973 Nov; 26(5):789-95. PubMed ID: 4796955 [TBL] [Abstract][Full Text] [Related]
27. Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria. Strobel HJ; Russell JB J Dairy Sci; 1986 Nov; 69(11):2941-7. PubMed ID: 3805466 [TBL] [Abstract][Full Text] [Related]
28. Dynamics of fermentation of a purified diet and microbial growth in the rumen. Maeng WJ; Baldwin RL J Dairy Sci; 1976 Apr; 59(4):636-42. PubMed ID: 1262577 [TBL] [Abstract][Full Text] [Related]
29. Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis. Reynolds CK; Kristensen NB J Anim Sci; 2008 Apr; 86(14 Suppl):E293-305. PubMed ID: 17940161 [TBL] [Abstract][Full Text] [Related]
30. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. Russell JB; Sniffen CJ; Van Soest PJ J Dairy Sci; 1983 Apr; 66(4):763-75. PubMed ID: 6853798 [TBL] [Abstract][Full Text] [Related]
31. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC). Zhao XH; Liu CJ; Liu Y; Li CY; Yao JH J Anim Physiol Anim Nutr (Berl); 2013 Dec; 97(6):1161-9. PubMed ID: 23278844 [TBL] [Abstract][Full Text] [Related]
32. Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output. Mackie RI; White BA J Dairy Sci; 1990 Oct; 73(10):2971-95. PubMed ID: 2178174 [TBL] [Abstract][Full Text] [Related]
33. The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria. Ling JR; Armstead IP J Appl Bacteriol; 1995 Feb; 78(2):116-24. PubMed ID: 7698948 [TBL] [Abstract][Full Text] [Related]
34. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. Callaway ES; Martin SA J Dairy Sci; 1997 Sep; 80(9):2035-44. PubMed ID: 9313145 [TBL] [Abstract][Full Text] [Related]
35. Influence of peptides and amino acids on fermentation rate and de novo synthesis of amino acids by mixed micro-organisms from the sheep rumen. Atasoglu C; Valdés C; Newbold CJ; Wallace RJ Br J Nutr; 1999 Apr; 81(4):307-14. PubMed ID: 10999018 [TBL] [Abstract][Full Text] [Related]
36. Functional gene-guided enrichment plus in situ microsphere cultivation enables isolation of new crucial ureolytic bacteria from the rumen of cattle. Liu S; Yu Z; Zhong H; Zheng N; Huws S; Wang J; Zhao S Microbiome; 2023 Apr; 11(1):76. PubMed ID: 37060083 [TBL] [Abstract][Full Text] [Related]
37. Effect of Aspergillus oryzae extract alone or in combination with antimicrobial compounds on ruminal bacteria. Beharka AA; Nagaraja TG J Dairy Sci; 1998 Jun; 81(6):1591-8. PubMed ID: 9684165 [TBL] [Abstract][Full Text] [Related]
38. Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Wells JE; Russell JB; Shi Y; Weimer PJ Appl Environ Microbiol; 1995 May; 61(5):1757-62. PubMed ID: 7646013 [TBL] [Abstract][Full Text] [Related]
39. Simulation of nutrient digestion, absorption and outflow in the rumen: model description. Dijkstra J; Neal HD; Beever DE; France J J Nutr; 1992 Nov; 122(11):2239-56. PubMed ID: 1331382 [TBL] [Abstract][Full Text] [Related]
40. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Russell JB; Strobel HJ; Chen GJ Appl Environ Microbiol; 1988 Apr; 54(4):872-7. PubMed ID: 3377500 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]