These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9690791)

  • 1. A humane alternative to the measurement of the lethal effects (LD50) of non-neurotoxic venoms using hens' eggs.
    Sells PG; Ioannou P; Theakston RD
    Toxicon; 1998 Jul; 36(7):985-91. PubMed ID: 9690791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vivo but insensate model for the evaluation of antivenoms (ED(50)) using fertile hens' eggs.
    Sells PG; Laing GD; Theakston RD
    Toxicon; 2001 May; 39(5):665-8. PubMed ID: 11072045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of hens' eggs as an alternative to the conventional in vivo rodent assay for antidotes to haemorrhagic venoms.
    Sells PG; Richards AM; Laing GD; Theakston RD
    Toxicon; 1997 Sep; 35(9):1413-21. PubMed ID: 9403964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Animal experimentation in snake venom research and in vitro alternatives.
    Sells PG
    Toxicon; 2003 Aug; 42(2):115-33. PubMed ID: 12906883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximate LD50 determinations of snake venoms using eight to ten experimental animals.
    Meier J; Theakston RD
    Toxicon; 1986; 24(4):395-401. PubMed ID: 3715904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of snake venoms for neurotoxic and myotoxic effects using simple in vitro preparations from rodents and chicks.
    Harvey AL; Barfaraz A; Thomson E; Faiz A; Preston S; Harris JB
    Toxicon; 1994 Mar; 32(3):257-65. PubMed ID: 8016848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of inoculation routes on lethality of snake venoms (author's transl)].
    Lu CH; Tsai MY
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1980 Jun; 13(2):138-42. PubMed ID: 7449529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead.
    Gutiérrez JM; Solano G; Pla D; Herrera M; Segura Á; Vargas M; Villalta M; Sánchez A; Sanz L; Lomonte B; León G; Calvete JJ
    Toxins (Basel); 2017 May; 9(5):. PubMed ID: 28505100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of scorpion venom in chick embryo and mealworm assay depending on the use of the soluble fraction versus the whole venom.
    van der Valk T; van der Meijden A
    Toxicon; 2014 Sep; 88():38-43. PubMed ID: 24951875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in yield and lethality of venoms from Iranian snakes.
    Latifi M
    Toxicon; 1984; 22(3):373-80. PubMed ID: 6474490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumescent contravenom: murine model for prehospital treatment of Naja naja neurotoxic snake envenomation.
    Makdisi JR; Kim DP; Klein PA; Klein JA
    Int J Dermatol; 2018 May; 57(5):605-610. PubMed ID: 29460967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-Neutralisation of In Vitro Neurotoxicity of Asian and Australian Snake Neurotoxins and Venoms by Different Antivenoms.
    Silva A; Hodgson WC; Isbister GK
    Toxins (Basel); 2016 Oct; 8(10):. PubMed ID: 27763543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on neutralizing effect of Ophiorrhiza mungos root extract against Daboia russelii venom.
    Krishnan SA; Dileepkumar R; Nair AS; Oommen OV
    J Ethnopharmacol; 2014; 151(1):543-7. PubMed ID: 24280030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross neutralization of coral snake venoms by commercial Australian snake antivenoms.
    Ramos HR; Vassão RC; de Roodt AR; Santos E Silva EC; Mirtschin P; Ho PL; Spencer PJ
    Clin Toxicol (Phila); 2017 Jan; 55(1):33-39. PubMed ID: 27595162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the preclinical efficacy of antivenoms: from the lethality neutralization assay to antivenomics.
    Gutiérrez JM; Solano G; Pla D; Herrera M; Segura Á; Villalta M; Vargas M; Sanz L; Lomonte B; Calvete JJ; León G
    Toxicon; 2013 Jul; 69():168-79. PubMed ID: 23201503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of chlorpromazine and quinacrine on the lethality in mice of the venoms and neurotoxins from several snakes.
    Crosland RD
    Toxicon; 1989; 27(6):655-63. PubMed ID: 2749762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lethality in mice of dangerous Australian and other snake venom.
    Broad AJ; Sutherland SK; Coulter AR
    Toxicon; 1979; 17(6):661-4. PubMed ID: 524395
    [No Abstract]   [Full Text] [Related]  

  • 18. The development of IgY(DeltaFc) antibody based neuro toxin antivenoms and the study on their neutralization efficacies.
    Chiou VY
    Clin Toxicol (Phila); 2008 Jul; 46(6):539-44. PubMed ID: 18584367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of simple standard assay procedures for the characterization of snake venom.
    Theakston RD; Reid HA
    Bull World Health Organ; 1983; 61(6):949-56. PubMed ID: 6609011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Venom of the Brown Treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity.
    Mackessy SP; Sixberry NM; Heyborne WH; Fritts T
    Toxicon; 2006 Apr; 47(5):537-48. PubMed ID: 16545413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.