These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9690911)

  • 1. Colocalization of iron and ceroid in human atherosclerotic lesions.
    Lee FY; Lee TS; Pan CC; Huang AL; Chau LY
    Atherosclerosis; 1998 Jun; 138(2):281-8. PubMed ID: 9690911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythrophagocytosis and iron deposition in atherosclerotic lesions.
    Lee TS; Lee FY; Pang JH; Chau LY
    Chin J Physiol; 1999 Mar; 42(1):17-23. PubMed ID: 10405767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inducible nitric oxide synthase colocalizes with signs of lipid oxidation/peroxidation in human atherosclerotic plaques.
    Cromheeke KM; Kockx MM; De Meyer GR; Bosmans JM; Bult H; Beelaerts WJ; Vrints CJ; Herman AG
    Cardiovasc Res; 1999 Aug; 43(3):744-54. PubMed ID: 10690346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distribution of ceroid in human atherosclerosis.
    Mitchinson MJ; Hothersall DC; Brooks PN; De Burbure CY
    J Pathol; 1985 Feb; 145(2):177-83. PubMed ID: 3973770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody.
    Kume S; Takeya M; Mori T; Araki N; Suzuki H; Horiuchi S; Kodama T; Miyauchi Y; Takahashi K
    Am J Pathol; 1995 Sep; 147(3):654-67. PubMed ID: 7545874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-deficient diet reduces atherosclerotic lesions in apoE-deficient mice.
    Lee TS; Shiao MS; Pan CC; Chau LY
    Circulation; 1999 Mar; 99(9):1222-9. PubMed ID: 10069791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrophages, lipid oxidation, ceroid accumulation and alpha-tocopherol depletion in human atherosclerotic lesions.
    Carpenter KL; van der Veen C; Taylor SE; Hardwick SJ; Clare K; Hegyi L; Mitchinson MJ
    Gerontology; 1995; 41 Suppl 2():53-67. PubMed ID: 8821321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma.
    Ball RY; Stowers EC; Burton JH; Cary NR; Skepper JN; Mitchinson MJ
    Atherosclerosis; 1995 Apr; 114(1):45-54. PubMed ID: 7605375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What is the significance of ceroid in human atherosclerosis?
    Ball RY; Carpenter KL; Mitchinson MJ
    Arch Pathol Lab Med; 1987 Dec; 111(12):1134-40. PubMed ID: 3314788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the atherosclerotic core region. Chemical and ultrastructural analysis of microdissected atherosclerotic lesions from human aorta.
    Guyton JR; Klemp KF
    Arterioscler Thromb; 1994 Aug; 14(8):1305-14. PubMed ID: 8049192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid peroxidation and ceroid accumulation in macrophages cultured with oxidized low density lipoprotein.
    Shimasaki H; Maeba R; Tachibana R; Ueta N
    Gerontology; 1995; 41 Suppl 2():39-51. PubMed ID: 8821320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct patterns of transforming growth factor-beta isoform and receptor expression in human atherosclerotic lesions. Colocalization implicates TGF-beta in fibrofatty lesion development.
    Bobik A; Agrotis A; Kanellakis P; Dilley R; Krushinsky A; Smirnov V; Tararak E; Condron M; Kostolias G
    Circulation; 1999 Jun; 99(22):2883-91. PubMed ID: 10359732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructure of the human aortic fibrolipid lesion. Formation of the atherosclerotic lipid-rich core.
    Bocan TM; Schifani TA; Guyton JR
    Am J Pathol; 1986 Jun; 123(3):413-24. PubMed ID: 3717297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidized LDL ceroid, and prostaglandin metabolism in human atherosclerosis.
    Armstrong DA
    Med Hypotheses; 1992 Jul; 38(3):244-8. PubMed ID: 1513282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcification in atherosclerosis. I. Human studies.
    Tanimura A; McGregor DH; Anderson HC
    J Exp Pathol; 1986; 2(4):261-73. PubMed ID: 2946818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of intracellular lipid deposits in the lipid-laden cells of atherosclerotic lesions. A cytochemical and ultrastructural study.
    Lupu F; Danaricu I; Simionescu N
    Atherosclerosis; 1987 Oct; 67(2-3):127-42. PubMed ID: 2445362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis.
    Kockx MM; Cromheeke KM; Knaapen MW; Bosmans JM; De Meyer GR; Herman AG; Bult H
    Arterioscler Thromb Vasc Biol; 2003 Mar; 23(3):440-6. PubMed ID: 12615689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular lipid deposition in atherosclerosis.
    Guyton JR; Klemp KF; Black BL; Bocan TM
    Eur Heart J; 1990 Aug; 11 Suppl E():20-8. PubMed ID: 2226527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of human scavenger receptor class B type I in cultured human monocyte-derived macrophages and atherosclerotic lesions.
    Hirano K; Yamashita S; Nakagawa Y; Ohya T; Matsuura F; Tsukamoto K; Okamoto Y; Matsuyama A; Matsumoto K; Miyagawa J; Matsuzawa Y
    Circ Res; 1999 Jul; 85(1):108-16. PubMed ID: 10400916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron microscopy of lipid deposits in human atherosclerosis.
    Pasquinelli G; Preda P; Vici M; Gargiulo M; Stella A; D'Addato M; Laschi R
    Scanning Microsc; 1989 Dec; 3(4):1151-9. PubMed ID: 2561219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.