These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 9691076)

  • 1. Combinatorial libraries of transition-metal complexes, catalysts and materials.
    Francis MB; Jamison TF; Jacobsen EN
    Curr Opin Chem Biol; 1998 Jun; 2(3):422-8. PubMed ID: 9691076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation and utilization of synthetic combinatorial libraries.
    Eichler J; Houghten RA
    Mol Med Today; 1995 Jul; 1(4):174-80. PubMed ID: 9415154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition-metal-mediated reactions in combinatorial synthesis.
    Andres CJ; Whitehouse DL; Deshpande MS
    Curr Opin Chem Biol; 1998 Jun; 2(3):353-62. PubMed ID: 9691071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic peptide arrays and peptide combinatorial libraries for the exploration of protein-ligand interactions and the design of protein inhibitors.
    Eichler J
    Comb Chem High Throughput Screen; 2005 Mar; 8(2):135-43. PubMed ID: 15777177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the synthesis of peptide combinatorial libraries using a one-pot method.
    Herman LW; Tarr G; Kates SA
    Mol Divers; 1997; 2(3):147-55. PubMed ID: 9238645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple, multidimensional approach to high-throughput discovery of catalytic reactions.
    Robbins DW; Hartwig JF
    Science; 2011 Sep; 333(6048):1423-7. PubMed ID: 21903809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new combination of protecting groups and links for encoded synthetic libraries suited for consecutive tests on the solid phase and in solution.
    Felder ER; Heizmann G; Matthews IT; Rink H; Spieser E
    Mol Divers; 1996 Feb; 1(2):109-12. PubMed ID: 9237199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope or mass encoding of combinatorial libraries.
    Geysen HM; Wagner CD; Bodnar WM; Markworth CJ; Parke GJ; Schoenen FJ; Wagner DS; Kinder DS
    Chem Biol; 1996 Aug; 3(8):679-88. PubMed ID: 8807902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient solid-phase synthesis of peptide-based phosphine ligands: towards combinatorial libraries of selective transition metal catalysts.
    Christensen CA; Meldal M
    Chemistry; 2005 Jul; 11(14):4121-31. PubMed ID: 15861474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial libraries: studies in molecular recognition.
    Nestler HP; Liu R
    Comb Chem High Throughput Screen; 1998 Oct; 1(3):113-26. PubMed ID: 10500770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of metal binding pseudotripeptides.
    Kuenzel S; Pretzel D; Andert J; Beck K; Reissmann S
    J Pept Sci; 2003 Aug; 9(8):502-9. PubMed ID: 12952391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial catalyst discovery.
    Kuntz KW; Snapper ML; Hoveyda AH
    Curr Opin Chem Biol; 1999 Jun; 3(3):313-9. PubMed ID: 10359716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of combinatorial library methods in cancer research and drug discovery.
    Lam KS
    Anticancer Drug Des; 1997 Apr; 12(3):145-67. PubMed ID: 9154108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-phase combinatorial synthesis: in search of small-molecule enzyme mimics.
    Vandersteen AM; Han H; Janda KD
    Mol Divers; 1996 Oct; 2(1-2):89-96. PubMed ID: 9238638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial bead-based peptide libraries improved for rapid and robust screenings.
    Jee JE; Ang YL; Cha J; Ang MW; Ling J; Lim J; Lee SS
    Comb Chem High Throughput Screen; 2014; 17(6):520-30. PubMed ID: 24410000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of peptide ligands for malignancy- and growth-regulating galectins using random phage-display and designed combinatorial peptide libraries.
    André S; Arnusch CJ; Kuwabara I; Russwurm R; Kaltner H; Gabius HJ; Pieters RJ
    Bioorg Med Chem; 2005 Jan; 13(2):563-73. PubMed ID: 15598577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of combinatorial Peptide libraries for nanocluster synthesis.
    Slocik JM; Wright DW
    Methods Mol Biol; 2005; 303():133-42. PubMed ID: 15923681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New carbon- and sulfur-based ligands in catalysis.
    Dorta R
    Chimia (Aarau); 2011; 65(10):806-12. PubMed ID: 22054136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial approaches as a component of high-throughput experimentation (HTE) in catalysis research.
    Newsam JM; Schüth F
    Biotechnol Bioeng; 1998-1999; 61(4):203-16. PubMed ID: 10494070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient split synthesis for targeted libraries.
    Cohen B; Skiena S
    J Comb Chem; 2000; 2(1):10-8. PubMed ID: 10750484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.