These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 9691263)
1. A mathematical model of adaptive behavior in quadruped locomotion. Ito S; Yuasa H; Luo ZW; Ito M; Yanagihara D Biol Cybern; 1998 May; 78(5):337-47. PubMed ID: 9691263 [TBL] [Abstract][Full Text] [Related]
2. Lack of adaptation during prolonged split-belt locomotion in the intact and spinal cat. Kuczynski V; Telonio A; Thibaudier Y; Hurteau MF; Dambreville C; Desrochers E; Doelman A; Ross D; Frigon A J Physiol; 2017 Sep; 595(17):5987-6006. PubMed ID: 28643899 [TBL] [Abstract][Full Text] [Related]
3. A new learning paradigm: adaptive changes in interlimb coordination during perturbed locomotion in decerebrate cats. Yanagihara D; Udo M; Kondo I; Yoshida T Neurosci Res; 1993 Dec; 18(3):241-4. PubMed ID: 8127473 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation. Fukuoka Y; Habu Y; Fukui T Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783 [TBL] [Abstract][Full Text] [Related]
5. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints. Taga G Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764 [TBL] [Abstract][Full Text] [Related]
6. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study. Fujiki S; Aoi S; Funato T; Tomita N; Senda K; Tsuchiya K J R Soc Interface; 2015 Sep; 12(110):0542. PubMed ID: 26289658 [TBL] [Abstract][Full Text] [Related]
7. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models. Aoi S; Yamashita T; Tsuchiya K Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061909. PubMed ID: 21797405 [TBL] [Abstract][Full Text] [Related]
8. An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion. Nakada K; Asai T; Amemiya Y IEEE Trans Neural Netw; 2003; 14(5):1356-65. PubMed ID: 18244582 [TBL] [Abstract][Full Text] [Related]
9. Fast and Slow Adaptations of Interlimb Coordination Aoi S; Amano T; Fujiki S; Senda K; Tsuchiya K Front Robot AI; 2021; 8():697612. PubMed ID: 34422913 [TBL] [Abstract][Full Text] [Related]
10. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Nassour J; Hénaff P; Benouezdou F; Cheng G Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353 [TBL] [Abstract][Full Text] [Related]
11. Interlimb coordination during locomotion: what can be adapted and stored? Reisman DS; Block HJ; Bastian AJ J Neurophysiol; 2005 Oct; 94(4):2403-15. PubMed ID: 15958603 [TBL] [Abstract][Full Text] [Related]
12. Transition of pattern generation: the phenomenon of post-scratching locomotion. Trejo A; Tapia JA; De la Torre Valdovinos B; Huidobro N; Flores G; Flores-Hernandez J; Flores A; Manjarrez E Neuroscience; 2015 Mar; 288():156-66. PubMed ID: 25556832 [TBL] [Abstract][Full Text] [Related]
13. A mathematical model for the mechanism of rapid eye movements induced by an anticholinesterase in the decerebrate cat. Pompeiano O; Valentinuzzi M Arch Ital Biol; 1976 Jun; 114(2):103-54. PubMed ID: 190960 [TBL] [Abstract][Full Text] [Related]
14. Reorganization of the human central nervous system. Schalow G; Zäch GA Gen Physiol Biophys; 2000 Oct; 19 Suppl 1():11-240. PubMed ID: 11252267 [TBL] [Abstract][Full Text] [Related]
15. Muscle activity during forelimb stepping in decerebrate cats. Yamaguchi T Jpn J Physiol; 1992; 42(3):489-99. PubMed ID: 1434106 [TBL] [Abstract][Full Text] [Related]
16. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Taga G; Yamaguchi Y; Shimizu H Biol Cybern; 1991; 65(3):147-59. PubMed ID: 1912008 [TBL] [Abstract][Full Text] [Related]
17. Chaotic exploration and learning of locomotion behaviors. Shim Y; Husbands P Neural Comput; 2012 Aug; 24(8):2185-222. PubMed ID: 22509965 [TBL] [Abstract][Full Text] [Related]
18. Spatiotemporal control of interlimb coordination during transverse split-belt locomotion with 1:1 or 2:1 coupling patterns in intact adult cats. Thibaudier Y; Frigon A J Neurophysiol; 2014 Oct; 112(8):2006-18. PubMed ID: 25057143 [TBL] [Abstract][Full Text] [Related]
19. Long-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses. McVea DA; Pearson KG J Neurophysiol; 2007 Jan; 97(1):659-69. PubMed ID: 17108090 [TBL] [Abstract][Full Text] [Related]
20. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Aoi S; Ogihara N; Funato T; Sugimoto Y; Tsuchiya K Biol Cybern; 2010 May; 102(5):373-87. PubMed ID: 20217427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]