These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9691275)

  • 1. Distributed torsion angle grid search in high dimensions: a systematic approach to NMR structure determination.
    Gippert GP; Wright PE; Case DA
    J Biomol NMR; 1998 Apr; 11(3):241-63. PubMed ID: 9691275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space.
    Gottstein D; Kirchner DK; Güntert P
    J Biomol NMR; 2012 Apr; 52(4):351-64. PubMed ID: 22351031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation.
    Stein EG; Rice LM; Brünger AT
    J Magn Reson; 1997 Jan; 124(1):154-64. PubMed ID: 9424305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometry of kinked protein helices from NMR data.
    Murray DT; Lu Y; Cross TA; Quine JR
    J Magn Reson; 2011 May; 210(1):82-9. PubMed ID: 21420337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of proton-proton transfer dynamics in rotating solids and their use for 3D structure determination.
    Lange A; Seidel K; Verdier L; Luca S; Baldus M
    J Am Chem Soc; 2003 Oct; 125(41):12640-8. PubMed ID: 14531708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure determination in "shiftless" solid state NMR of oriented protein samples.
    Yin Y; Nevzorov AA
    J Magn Reson; 2011 Sep; 212(1):64-73. PubMed ID: 21741286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure determination of symmetric homo-oligomers by a complete search of symmetry configuration space, using NMR restraints and van der Waals packing.
    Potluri S; Yan AK; Chou JJ; Donald BR; Bailey-Kellogg C
    Proteins; 2006 Oct; 65(1):203-19. PubMed ID: 16897780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of different torsion angle approaches for NMR structure determination.
    Bardiaux B; Malliavin TE; Nilges M; Mazur AK
    J Biomol NMR; 2006 Mar; 34(3):153-66. PubMed ID: 16604424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sources of and solutions to problems in the refinement of protein NMR structures against torsion angle potentials of mean force.
    Kuszewski J; Clore GM
    J Magn Reson; 2000 Oct; 146(2):249-54. PubMed ID: 11001840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The beta-turn scaffold of tripeptide containing an azaphenylalanine residue.
    Lee HJ; Park HM; Lee KB
    Biophys Chem; 2007 Jan; 125(1):117-26. PubMed ID: 16890344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of a conserved DNA sequence from the HIV-1 genome: restrained molecular dynamics simulation with distance and torsion angle restraints derived from two-dimensional NMR spectra.
    Mujeeb A; Kerwin SM; Kenyon GL; James TL
    Biochemistry; 1993 Dec; 32(49):13419-31. PubMed ID: 8257678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of peptide backbone torsion angles using double-quantum dipolar recoupling solid-state NMR spectroscopy.
    Mehta MA; Eddy MT; McNeill SA; Mills FD; Long JR
    J Am Chem Soc; 2008 Feb; 130(7):2202-12. PubMed ID: 18220389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational analysis of protein and nucleic acid fragments with the new grid search algorithm FOUND.
    Güntert P; Billeter M; Ohlenschläger O; Brown LR; Wüthrich K
    J Biomol NMR; 1998 Nov; 12(4):543-8. PubMed ID: 20012763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restraint validation of biomolecular structures determined by NMR in the Protein Data Bank.
    Baskaran K; Ploskon E; Tejero R; Yokochi M; Harrus D; Liang Y; Peisach E; Persikova I; Ramelot TA; Sekharan M; Tolchard J; Westbrook JD; Bardiaux B; Schwieters CD; Patwardhan A; Velankar S; Burley SK; Kurisu G; Hoch JC; Montelione GT; Vuister GW; Young JY
    Structure; 2024 Jun; 32(6):824-837.e1. PubMed ID: 38490206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.
    Shen Y; Bax A
    Methods Mol Biol; 2015; 1260():17-32. PubMed ID: 25502373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods.
    Nakazawa Y; Asakura T
    J Am Chem Soc; 2003 Jun; 125(24):7230-7. PubMed ID: 12797796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.
    Herrmann T; Güntert P; Wüthrich K
    J Mol Biol; 2002 May; 319(1):209-27. PubMed ID: 12051947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein structure determination by conformational space annealing using NMR geometric restraints.
    Joo K; Joung I; Lee J; Lee J; Lee W; Brooks B; Lee SJ; Lee J
    Proteins; 2015 Dec; 83(12):2251-62. PubMed ID: 26454251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases.
    Kuszewski J; Gronenborn AM; Clore GM
    Protein Sci; 1996 Jun; 5(6):1067-80. PubMed ID: 8762138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.