These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9691574)

  • 21. A simple model of force generation by skeletal muscle during dynamic isometric contractions.
    Bobet J; Stein RB
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1010-6. PubMed ID: 9691575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A neuro-sliding-mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation.
    Ajoudani A; Erfanian A
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1771-80. PubMed ID: 19336284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic model of skeletal muscle isometric contraction: I. an energetic-viscoelastic model for the skeletal muscle isometric force twitch.
    Phillips CA; Repperger DW; Neidhard-Doll AT; Reynolds DB
    Comput Biol Med; 2004 Jun; 34(4):307-22. PubMed ID: 15121002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electromyography of superficial and deep neck muscles during isometric, voluntary, and reflex contractions.
    Siegmund GP; Blouin JS; Brault JR; Hedenstierna S; Inglis JT
    J Biomech Eng; 2007 Feb; 129(1):66-77. PubMed ID: 17227100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decentralized adaptive robust control based on sliding mode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of agonist-antagonist muscles.
    Kobravi HR; Erfanian A
    J Neural Eng; 2009 Aug; 6(4):046007. PubMed ID: 19587395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle.
    Siebert T; Rode C; Herzog W; Till O; Blickhan R
    Biol Cybern; 2008 Feb; 98(2):133-43. PubMed ID: 18049823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of finger posture on mapping from muscle activation to joint torque.
    Kamper DG; Fischer HC; Cruz EG
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):361-9. PubMed ID: 16406192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A theoretical approach for modeling peripheral muscle fatigue and recovery.
    Xia T; Frey Law LA
    J Biomech; 2008 Oct; 41(14):3046-52. PubMed ID: 18789445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NARMAX representation and identification of ankle dynamics.
    Kukreja SL; Galiana HL; Kearney RE
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):70-81. PubMed ID: 12617526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic modeling and torque estimation of FES-assisted arm-free standing for paraplegics.
    Kim JY; Popovic MR; Mills JK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):46-54. PubMed ID: 16562631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomimetic model of skeletal muscle isometric contraction: II. A phenomenological model of the skeletal muscle excitation-contraction coupling process.
    Neidhard-Doll AT; Phillips CA; Repperger DW; Reynolds DB
    Comput Biol Med; 2004 Jun; 34(4):323-44. PubMed ID: 15121003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals.
    Farina D; FĂ©votte C; Doncarli C; Merletti R
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1555-67. PubMed ID: 15376504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of high motor unit synchronization levels on non-linear and spectral variables of the surface EMG.
    Fattorini L; Felici F; Filligoi GC; Traballesi M; Farina D
    J Neurosci Methods; 2005 Apr; 143(2):133-9. PubMed ID: 15814145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A nonlinear regression model-based predictive control algorithm.
    Dubay R; Abu-Ayyad M; Hernandez JM
    ISA Trans; 2009 Apr; 48(2):180-9. PubMed ID: 19144334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the lambda model for human postural control during ankle strategy.
    Micheau P; Kron A; Bourassa P
    Biol Cybern; 2003 Sep; 89(3):227-36. PubMed ID: 14504941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of contraction form and contraction velocity on the differences between resultant and measured ankle joint moments.
    Arampatzis A; De Monte G; Morey-Klapsing G
    J Biomech; 2007; 40(7):1622-8. PubMed ID: 16928376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of joint moments using a neural network model of muscle activations from EMG signals.
    Wang L; Buchanan TS
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):30-7. PubMed ID: 12173737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parametric time-varying spectrum and its application to SEMG signals.
    Korosec D
    Stud Health Technol Inform; 1999; 68():385-90. PubMed ID: 10724912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.