BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

793 related articles for article (PubMed ID: 9692786)

  • 1. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.
    García-Pascual A; Labadía A; Jimenez E; Costa G
    Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The endothelium mediates a nitric oxide-independent hyperpolarization and relaxation in the rat hepatic artery.
    Zygmunt PM; Waldeck K; Högestätt ED
    Acta Physiol Scand; 1994 Dec; 152(4):375-84. PubMed ID: 7701938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple pathways underlying endothelium-dependent relaxation in the rabbit isolated femoral artery.
    Plane F; Pearson T; Garland CJ
    Br J Pharmacol; 1995 May; 115(1):31-8. PubMed ID: 7647981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelium-dependent relaxation resistant to N omega-nitro-L-arginine in the rat hepatic artery and aorta.
    Zygmunt PM; Grundemar L; Högestätt ED
    Acta Physiol Scand; 1994 Sep; 152(1):107-14. PubMed ID: 7810328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-dependent effects of zinc protoporphyrin IX on endothelium-dependent relaxation resistant to N omega-nitro-L-arginine.
    Zygmunt PM; Högestätt ED; Grundemar L
    Acta Physiol Scand; 1994 Oct; 152(2):137-43. PubMed ID: 7839858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Varying extracellular [K+]: a functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed.
    Adeagbo AS; Triggle CR
    J Cardiovasc Pharmacol; 1993 Mar; 21(3):423-9. PubMed ID: 7681503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the pharmacological properties of EDHF-mediated vasorelaxation in guinea-pig cerebral and mesenteric resistance vessels.
    Dong H; Jiang Y; Cole WC; Triggle CR
    Br J Pharmacol; 2000 Aug; 130(8):1983-91. PubMed ID: 10952691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-dependent relaxation of small arteries from essential hypertensive patients: mechanisms and comparison with normotensive subjects and with responses of vessels from spontaneously hypertensive rats.
    Deng LY; Li JS; Schiffrin EL
    Clin Sci (Lond); 1995 Jun; 88(6):611-22. PubMed ID: 7543395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sydnonimine C87-3754 evokes endothelium-independent relaxations and prevents endothelium-dependent contractions in blood vessels of the dog.
    Schini VB; Bond R; Gao Y; Illiano S; Junquero DC; Mombouli JV; Nagao T; Smart F; Vanhoutte PM
    J Cardiovasc Pharmacol; 1993; 22 Suppl 7():S10-6. PubMed ID: 7504762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation by trandolaprilat of the endothelium-dependent hyperpolarization induced by bradykinin.
    Illiano S; Mombouli JV; Nagao T; Vanhoutte PM
    J Cardiovasc Pharmacol; 1994; 23 Suppl 4():S6-10. PubMed ID: 7527103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery.
    Kilpatrick EV; Cocks TM
    Br J Pharmacol; 1994 Jun; 112(2):557-65. PubMed ID: 7521260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of endothelium in responses of isolated hepatic vessels to vasoactive agents.
    Joshi SN; Lonigro AJ; Secrest RJ; Chapnick BM
    J Pharmacol Exp Ther; 1991 Oct; 259(1):71-7. PubMed ID: 1920137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of membrane potential in endothelium-dependent relaxation of guinea-pig coronary arterial smooth muscle.
    Parkington HC; Tonta MA; Coleman HA; Tare M
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):469-80. PubMed ID: 7541469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dominant role of an endothelium-derived hyperpolarizing factor (EDHF)-like vasodilator in the ciliary vascular bed of the bovine isolated perfused eye.
    McNeish AJ; Wilson WS; Martin W
    Br J Pharmacol; 2001 Oct; 134(4):912-20. PubMed ID: 11606333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barium inhibits the endothelium-dependent component of flow but not acetylcholine-induced relaxation in isolated rabbit cerebral arteries.
    Wellman GC; Bevan JA
    J Pharmacol Exp Ther; 1995 Jul; 274(1):47-53. PubMed ID: 7616433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of myoendothelial cell contact in non-nitric oxide-, non-prostanoid-mediated endothelium-dependent relaxation of porcine coronary artery.
    Kühberger E; Groschner K; Kukovetz WR; Brunner F
    Br J Pharmacol; 1994 Dec; 113(4):1289-94. PubMed ID: 7889285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalase has negligible inhibitory effects on endothelium-dependent relaxations in mouse isolated aorta and small mesenteric artery.
    Ellis A; Pannirselvam M; Anderson TJ; Triggle CR
    Br J Pharmacol; 2003 Dec; 140(7):1193-200. PubMed ID: 14597598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calmidazolium, a calmodulin inhibitor, inhibits endothelium-dependent relaxations resistant to nitro-L-arginine in the canine coronary artery.
    Illiano S; Nagao T; Vanhoutte PM
    Br J Pharmacol; 1992 Oct; 107(2):387-92. PubMed ID: 1358391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries.
    Cowan CL; Palacino JJ; Najibi S; Cohen RA
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1482-9. PubMed ID: 8396636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.