These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In vivo study of calcium phosphate cements: implantation of an alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste. Kurashina K; Kurita H; Hirano M; Kotani A; Klein CP; de Groot K Biomaterials; 1997 Apr; 18(7):539-43. PubMed ID: 9105593 [TBL] [Abstract][Full Text] [Related]
3. Tissue responses of calcium phosphate cement: a study in dogs. Yuan H; Li Y; de Bruijn JD; de Groot K; Zhang X Biomaterials; 2000 Jun; 21(12):1283-90. PubMed ID: 10811310 [TBL] [Abstract][Full Text] [Related]
4. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Bohner M; Theiss F; Apelt D; Hirsiger W; Houriet R; Rizzoli G; Gnos E; Frei C; Auer JA; von Rechenberg B Biomaterials; 2003 Sep; 24(20):3463-74. PubMed ID: 12809775 [TBL] [Abstract][Full Text] [Related]
5. Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate. Burguera EF; Xu HH; Weir MD J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):126-34. PubMed ID: 16184538 [TBL] [Abstract][Full Text] [Related]
6. Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system. Mirtchi AA; Lemaitre J; Terao N Biomaterials; 1989 Sep; 10(7):475-80. PubMed ID: 2804235 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of self-setting β-tricalcium phosphate granular cement. Fukuda N; Tsuru K; Mori Y; Ishikawa K J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):800-807. PubMed ID: 28370963 [TBL] [Abstract][Full Text] [Related]
8. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Link DP; van den Dolder J; Jurgens WJ; Wolke JG; Jansen JA Biomaterials; 2006 Oct; 27(28):4941-7. PubMed ID: 16759694 [TBL] [Abstract][Full Text] [Related]
9. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. Ohura K; Bohner M; Hardouin P; Lemaître J; Pasquier G; Flautre B J Biomed Mater Res; 1996 Feb; 30(2):193-200. PubMed ID: 9019484 [TBL] [Abstract][Full Text] [Related]
10. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Klammert U; Reuther T; Blank M; Reske I; Barralet JE; Grover LM; Kübler AC; Gbureck U Acta Biomater; 2010 Apr; 6(4):1529-35. PubMed ID: 19837194 [TBL] [Abstract][Full Text] [Related]
12. Mechanical strength of calcium phosphate cement in vivo and in vitro. Yamamoto H; Niwa S; Hori M; Hattori T; Sawai K; Aoki S; Hirano M; Takeuchi H Biomaterials; 1998 Sep; 19(17):1587-91. PubMed ID: 9830984 [TBL] [Abstract][Full Text] [Related]
13. In vivo evaluation of injectable calcium phosphate cement composed of Zn- and Si-incorporated β-tricalcium phosphate and monocalcium phosphate monohydrate for a critical sized defect of the rabbit femoral condyle. Paul K; Lee BY; Abueva C; Kim B; Choi HJ; Bae SH; Lee BT J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):260-271. PubMed ID: 26478465 [TBL] [Abstract][Full Text] [Related]
14. Effects of pullulan on the biomechanical and anti-collapse properties of dicalcium phosphate dihydrate bone cement. Xi W; Ding Z; Ren H; Chen H; Yan Y; Zhang Q J Biomater Appl; 2021 Nov; 36(5):757-771. PubMed ID: 34074159 [TBL] [Abstract][Full Text] [Related]
15. Effects of acidic calcium phosphate concentration on setting reaction and tissue response to β-tricalcium phosphate granular cement. Fukuda N; Ishikawa K; Akita K; Kamada K; Kurio N; Mori Y; Miyamoto Y J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):22-29. PubMed ID: 30884116 [TBL] [Abstract][Full Text] [Related]
16. Blooming gelatin: an individual additive for enhancing nanoapatite precipitation, physical properties, and osteoblastic responses of nanostructured macroporous calcium phosphate bone cements. Orshesh Z; Hesaraki S; Khanlarkhani A Int J Nanomedicine; 2017; 12():745-758. PubMed ID: 28176961 [TBL] [Abstract][Full Text] [Related]
17. Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue. Lye KW; Tideman H; Wolke JC; Merkx MA; Chin FK; Jansen JA Clin Oral Implants Res; 2013 Aug; 24 Suppl A100():100-9. PubMed ID: 22150934 [TBL] [Abstract][Full Text] [Related]
18. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part II. Bioengineering implants to optimize bone replacement in reconstruction of cranial defects. Gosain AK; Riordan PA; Song L; Amarante MT; Kalantarian B; Nagy PG; Wilson CR; Toth JM; McIntyre BL Plast Reconstr Surg; 2004 Oct; 114(5):1155-63; discussion 1164-5. PubMed ID: 15457027 [TBL] [Abstract][Full Text] [Related]
19. Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/β-TCP and MCPM/HA formulations. Alge DL; Goebel WS; Chu TM Biomed Mater; 2013 Apr; 8(2):025010. PubMed ID: 23428798 [TBL] [Abstract][Full Text] [Related]
20. In vivo study of a calcium phosphate cement consisting of alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide. Kurashina K; Kurita H; Kotani A; Takeuchi H; Hirano M Biomaterials; 1997 Jan; 18(2):147-51. PubMed ID: 9022962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]