These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9692802)

  • 41. Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives.
    Bartil T; Bounekhel M; Cedric C; Jeerome R
    Acta Pharm; 2007 Sep; 57(3):301-14. PubMed ID: 17878110
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds.
    Ghandehari H; Kopecková P; Kopecek J
    Biomaterials; 1997 Jun; 18(12):861-72. PubMed ID: 9184750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and characterization of pH-sensitive poly(organophosphazene) hydrogels.
    Allcock HR; Ambrosio AM
    Biomaterials; 1996 Dec; 17(23):2295-302. PubMed ID: 8968526
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Original stimuli-sensitive polysaccharide derivatives/N-isopropylacrylamide hydrogels. Role of polysaccharide backbone.
    Hamcerencu M; Desbrieres J; Popa M; Riess G
    Carbohydr Polym; 2012 Jun; 89(2):438-47. PubMed ID: 24750741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs.
    Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM
    Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Release characteristics of novel pH-sensitive p(HEMA-DMAEMA) hydrogels containing 3-(trimethoxy-silyl) propyl methacrylate.
    Brahim S; Narinesingh D; Guiseppi-Elie A
    Biomacromolecules; 2003; 4(5):1224-31. PubMed ID: 12959587
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In situ formation of thermosensitive PNIPAAm-based hydrogels by Michael-type addition reaction.
    Wang ZC; Xu XD; Chen CS; Yun L; Song JC; Zhang XZ; Zhuo RX
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1009-18. PubMed ID: 20423120
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The relation between swelling properties and cross-linking of hydrogels designed for colon-specific drug delivery.
    Mahkam M; Doostie L
    Drug Deliv; 2005; 12(6):343-7. PubMed ID: 16302329
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiresponsive hydrogels based on xylan-type hemicelluloses and photoisomerized azobenzene copolymer as drug delivery carrier.
    Cao X; Peng X; Zhong L; Sun R
    J Agric Food Chem; 2014 Oct; 62(41):10000-7. PubMed ID: 25260117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polymer composition and acidification effects on the swelling and mechanical properties of poly(acrylamide-co-acrylic acid) superporous hydrogels.
    Kim D; Seo K; Park K
    J Biomater Sci Polym Ed; 2004; 15(2):189-99. PubMed ID: 15109097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. pH-sensitivity of fast responsive superporous hydrogels.
    Gemeinhart RA; Chen J; Park H; Park K
    J Biomater Sci Polym Ed; 2000; 11(12):1371-80. PubMed ID: 11261878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modified carrageenan. 2. Hydrolyzed crosslinked kappa-carrageenan-g-PAAm as a novel smart superabsorbent hydrogel with low salt sensitivity.
    Hosseinzadeh H; Pourjavavdi A; Zohuriaan-Mehr MJ
    J Biomater Sci Polym Ed; 2004; 15(12):1499-511. PubMed ID: 15696795
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.
    Wang S; Robertson ML
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12109-18. PubMed ID: 26020581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and Characterization of
    Lavine BK; Kaval N; Oxenford L; Kim M; Dahal KS; Perera N; Seitz R; Moulton JT; Bunce RA
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640813
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polysaccharide-based hydrogels for the immobilization and controlled release of bovine serum albumin.
    Varnier K; Vieira T; Wolf M; Belfiore LA; Tambourgi EB; Paulino AT
    Int J Biol Macromol; 2018 Dec; 120(Pt A):522-528. PubMed ID: 30165142
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.
    Nam K; Watanabe J; Ishihara K
    Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate.
    Brannon-Peppas L; Peppas NA
    Biomaterials; 1990 Nov; 11(9):635-44. PubMed ID: 2090297
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermosensitivity of N-isopropylacrylamide hydrogels cross-linked with degradable cross-linker.
    Pérez P; Gallardo A; Corrigan OI; Román JS
    J Biomater Sci Polym Ed; 2008; 19(6):769-83. PubMed ID: 18534096
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(N-isopropylacrylamide)-based macromers.
    Hacker MC; Klouda L; Ma BB; Kretlow JD; Mikos AG
    Biomacromolecules; 2008 Jun; 9(6):1558-70. PubMed ID: 18481893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.