These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9692802)

  • 61. Determination of swelling of responsive gels with nanometer resolution. Fiber-optic based platform for hydrogels as signal transducers.
    Tierney S; Hjelme DR; Stokke BT
    Anal Chem; 2008 Jul; 80(13):5086-93. PubMed ID: 18491924
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Methacrylated alkali lignin grafted P(Nipam-Co-AAc) copolymeric hydrogels: Tuning the mechanical and stimuli-responsive properties.
    Parvathy PA; Ayobami AV; Raichur AM; Sahoo SK
    Int J Biol Macromol; 2021 Dec; 192():180-196. PubMed ID: 34619273
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release.
    Wu DQ; Sun YX; Xu XD; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2008 Apr; 9(4):1155-62. PubMed ID: 18307310
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery.
    Zhang L; Wang L; Guo B; Ma PX
    Carbohydr Polym; 2014 Mar; 103():110-8. PubMed ID: 24528707
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Study on novel hydrogels based on thermosensitive PNIPAAm with pH sensitive PDMAEMA grafts.
    Wang ZC; Xu XD; Chen CS; Wang GR; Wang B; Zhang XZ; Zhuo RX
    Colloids Surf B Biointerfaces; 2008 Dec; 67(2):245-52. PubMed ID: 18929467
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A kind of novel biodegradable hydrogel made from copolymerization of gelatin with polypseudorotaxanes based on alpha-CDs.
    Hou D; Tong X; Yu H; Zhang AY; Feng ZG
    Biomed Mater; 2007 Sep; 2(3):S147-52. PubMed ID: 18458460
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modeling ionic hydrogels swelling: characterization of the non-steady state.
    Traitel T; Kost J; Lapidot SA
    Biotechnol Bioeng; 2003 Oct; 84(1):20-8. PubMed ID: 12910539
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesis and hydration properties of pH-sensitive p(HEMA)-based hydrogels containing 3-(trimethoxysilyl)propyl methacrylate.
    Brahim S; Narinesingh D; Guiseppi-Elie A
    Biomacromolecules; 2003; 4(3):497-503. PubMed ID: 12741762
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dual-Functional Hydrazide-Reactive and Anhydride-Containing Oligomeric Hydrogel Building Blocks.
    Kascholke C; Loth T; Kohn-Polster C; Möller S; Bellstedt P; Schulz-Siegmund M; Schnabelrauch M; Hacker MC
    Biomacromolecules; 2017 Mar; 18(3):683-694. PubMed ID: 28125209
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Swelling response of radiation synthesized 2-hydroxyethylmethacrylate-co-[2-(methacryloyloxy)ethyl] trimethylammonium chloride hydrogels under various in vitro conditions.
    Goel NK; Kumar V; Bhardwaj YK; Chaudhari CV; Dubey KA; Sabharwal S
    J Biomater Sci Polym Ed; 2009; 20(5-6):785-805. PubMed ID: 19323890
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Superabsorbent hydrogel made of NaAlg-g-poly(AA-co-AAm) and rice husk ash: Synthesis, characterization, and swelling kinetic studies.
    Gharekhani H; Olad A; Mirmohseni A; Bybordi A
    Carbohydr Polym; 2017 Jul; 168():1-13. PubMed ID: 28457428
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Self-healing hydrogels containing reversible oxime crosslinks.
    Mukherjee S; Hill MR; Sumerlin BS
    Soft Matter; 2015 Aug; 11(30):6152-61. PubMed ID: 26143752
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links.
    Kim S; Healy KE
    Biomacromolecules; 2003; 4(5):1214-23. PubMed ID: 12959586
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of compression on fast swelling of poly(acrylamide-co-acrylic acid) superporous hydrogels.
    Gemeinhart RA; Park H; Park K
    J Biomed Mater Res; 2001 Apr; 55(1):54-62. PubMed ID: 11426398
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gelatin hydrogels: enhanced biocompatibility, drug release and cell viability.
    Rathna GV
    J Mater Sci Mater Med; 2008 Jun; 19(6):2351-8. PubMed ID: 18157687
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biomimetic hydrogels gate transport of calcium ions across cell culture inserts.
    Kotanen CN; Wilson AN; Wilson AM; Ishihara K; Guiseppi-Elie A
    Biomed Microdevices; 2012 Jun; 14(3):549-58. PubMed ID: 22426887
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Degradable and biocompatible hydrogels bearing a hindered urea bond.
    Ying H; Yen J; Wang R; Lai Y; Hsu JL; Hu Y; Cheng J
    Biomater Sci; 2017 Nov; 5(12):2398-2402. PubMed ID: 29067374
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Rapid and precise release from nano-tracted poly(N-isopropylacrylamide) hydrogels containing linear poly(acrylic acid).
    Asoh TA; Kaneko T; Matsusaki M; Akashi M
    Macromol Biosci; 2006 Nov; 6(11):959-65. PubMed ID: 17099869
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Azo polymeric hydrogels for colon targeted drug delivery.
    Shantha KL; Ravichandran P; Rao KP
    Biomaterials; 1995 Nov; 16(17):1313-8. PubMed ID: 8573669
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synthesis and colon-specific drug delivery of a poly(acrylic acid-co-acrylamide)/MBA nanosized hydrogel.
    Ray D; Mohapatra DK; Mohapatra RK; Mohanta GP; Sahoo PK
    J Biomater Sci Polym Ed; 2008; 19(11):1487-502. PubMed ID: 18973725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.