These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9692802)

  • 81. Preparation and characterization of hydrogels based on homopolymeric fractions of sodium alginate and PNIPAAm.
    Leal D; De Borggraeve W; Encinas MV; Matsuhiro B; Müller R
    Carbohydr Polym; 2013 Jan; 92(1):157-66. PubMed ID: 23218278
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels.
    Buyanov AL; Gofman IV; Revel'skaya LG; Khripunov AK; Tkachenko AA
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):102-11. PubMed ID: 19878907
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Synthesis and characterization of pH-sensitive glycopolymers for oral drug delivery systems.
    Kim B; Peppas NA
    J Biomater Sci Polym Ed; 2002; 13(11):1271-81. PubMed ID: 12518804
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Stimuli-responsive and hemocompatible pseudozwitterionic interfaces.
    Venault A; Zheng YS; Chinnathambi A; Alharbi SA; Ho HT; Chang Y; Chang Y
    Langmuir; 2015 Mar; 31(9):2861-9. PubMed ID: 25680392
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Structure of surfaces and interfaces of poly(N,N-dimethylacrylamide) hydrogels.
    Sudre G; Hourdet D; Cousin F; Creton C; Tran Y
    Langmuir; 2012 Aug; 28(33):12282-7. PubMed ID: 22823739
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Dynamic behavior of glucose oxidase-containing microparticles of poly(ethylene glycol)-grafted cationic hydrogels in an environment of changing pH.
    Podual K; Doyle FJ; Peppas NA
    Biomaterials; 2000 Jul; 21(14):1439-50. PubMed ID: 10872773
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cell adhesion and accelerated detachment on the surface of temperature-sensitive chitosan and poly(N-isopropylacrylamide) hydrogels.
    Wang J; Chen L; Zhao Y; Guo G; Zhang R
    J Mater Sci Mater Med; 2009 Feb; 20(2):583-90. PubMed ID: 18853241
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Hydrogels for site-specific drug delivery to the colon: in vitro and in vivo degradation.
    Brøndsted H; Kopecek J
    Pharm Res; 1992 Dec; 9(12):1540-5. PubMed ID: 1488395
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A potentiostatic study of oxygen transmissibility and permeability through hydrogel membranes.
    Compañ V; Guzmán J; Riande E
    Biomaterials; 1998 Dec; 19(23):2139-45. PubMed ID: 9884054
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Long-term structural changes in pH-sensitive hydrogels.
    De Moor CP; Doh L; Siegel RA
    Biomaterials; 1991 Nov; 12(9):836-40. PubMed ID: 1764554
    [TBL] [Abstract][Full Text] [Related]  

  • 91. In vitro release dynamics of model drugs from psyllium and acrylic acid based hydrogels for the use in colon specific drug delivery.
    Singh B; Bala R; Chauhan N
    J Mater Sci Mater Med; 2008 Aug; 19(8):2771-80. PubMed ID: 18305900
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Multiresponsive 4D Printable Hydrogels with Anti-Inflammatory Properties.
    Regato-Herbella M; Mantione D; Blachman A; Gallastegui A; Calabrese GC; Moya SE; Mecerreyes D; Criado-Gonzalez M
    ACS Macro Lett; 2024 Sep; 13(9):1119-1126. PubMed ID: 39140782
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Organic redox-initiated polymerization process for the fabrication of hydrogels for colon-specific drug delivery.
    Akala EO; Elekwachi O; Chase V; Johnson H; Lazarre M; Scott K
    Drug Dev Ind Pharm; 2003 Apr; 29(4):375-86. PubMed ID: 12737531
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Acrylamide, acrylic acid and N-isopropylacrylamide hydrogels as osmotic tissue expanders.
    Varga J; Janovak L; Varga E; Eros G; Dekany I; Kemeny L
    Skin Pharmacol Physiol; 2009; 22(6):305-12. PubMed ID: 19786824
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Control of Mesh Size and Modulus by Kinetically Dependent Cross-Linking in Hydrogels.
    Zander ZK; Hua G; Wiener CG; Vogt BD; Becker ML
    Adv Mater; 2015 Oct; 27(40):6283-8. PubMed ID: 26332364
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Influence of drug and polymer molecular weight on release kinetics from HEMA and HPMA hydrogels.
    Toews P; Bates J
    Sci Rep; 2023 Oct; 13(1):16685. PubMed ID: 37794078
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Enzymatic hydrolysis of copoly(N-hydroxypropyl-L-glutamine/L-leucine) hydrogels in vitro.
    Miyachi Y; Jokei K; Oka M; Hayashi T
    J Biomater Sci Polym Ed; 1996; 7(9):805-16. PubMed ID: 8773884
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Alteration of fibrin hydrogel gelation and degradation kinetics through addition of azo dyes.
    Gandhi JK; Heinrich L; Knoff DS; Kim M; Marmorstein AD
    J Biomed Mater Res A; 2021 Nov; 109(11):2357-2368. PubMed ID: 33973708
    [TBL] [Abstract][Full Text] [Related]  

  • 99. pH-sensitive water-soluble nanospheric imprinted hydrogels prepared as horseradish peroxidase mimetic enzymes.
    Chen Z; Xu L; Liang Y; Zhao M
    Adv Mater; 2010 Apr; 22(13):1488-92. PubMed ID: 20437497
    [No Abstract]   [Full Text] [Related]  

  • 100. Studies on the hydrolysis of biocompatible acrylic polymers having aspirin-moieties.
    Gu ZW; Li FM; Feng XD; Voong ST
    Biomater Med Devices Artif Organs; 1983; 11(2-3):211-9. PubMed ID: 6667325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.