BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 9692924)

  • 1. Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants--structural and kinetic properties of the free and bound enzymes.
    Droux M; Ruffet ML; Douce R; Job D
    Eur J Biochem; 1998 Jul; 255(1):235-45. PubMed ID: 9692924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of O-acetylserine (thiol) lyase from spinach chloroplasts.
    Droux M; Martin J; Sajus P; Douce R
    Arch Biochem Biophys; 1992 Jun; 295(2):379-90. PubMed ID: 1375015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinach chloroplast 0-acetylserine (thiol)-lyase exhibits two catalytically non-equivalent pyridoxal-5'-phosphate-containing active sites.
    Rolland N; Ruffet ML; Job D; Douce R; Droux M
    Eur J Biochem; 1996 Feb; 236(1):272-82. PubMed ID: 8617276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O-acetylserine(thiol)lyase from spinach (Spinacia oleracea L.) leaf: cDNA cloning, characterization, and overexpression in Escherichia coli of the chloroplast isoform.
    Rolland N; Droux M; Lebrun M; Douce R
    Arch Biochem Biophys; 1993 Jan; 300(1):213-22. PubMed ID: 8424655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy.
    Campanini B; Speroni F; Salsi E; Cook PF; Roderick SL; Huang B; Bettati S; Mozzarelli A
    Protein Sci; 2005 Aug; 14(8):2115-24. PubMed ID: 15987896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts.
    Ruffet ML; Droux M; Douce R
    Plant Physiol; 1994 Feb; 104(2):597-604. PubMed ID: 12232109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase.
    Huang B; Vetting MW; Roderick SL
    J Bacteriol; 2005 May; 187(9):3201-5. PubMed ID: 15838047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the interaction site of serine acetyltransferase in the cysteine synthase complex from Escherichia coli.
    Zhao C; Moriga Y; Feng B; Kumada Y; Imanaka H; Imamura K; Nakanishi K
    Biochem Biophys Res Commun; 2006 Mar; 341(4):911-6. PubMed ID: 16442495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine synthesis in plants: protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana.
    Bogdanova N; Hell R
    Plant J; 1997 Feb; 11(2):251-62. PubMed ID: 9076992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties.
    Wirtz M; Hell R
    J Plant Physiol; 2006 Feb; 163(3):273-86. PubMed ID: 16386330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon.
    Saito K; Yokoyama H; Noji M; Murakoshi I
    J Biol Chem; 1995 Jul; 270(27):16321-6. PubMed ID: 7608200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical properties of nematode O-acetylserine(thiol)lyase paralogs imply their distinct roles in hydrogen sulfide homeostasis.
    Vozdek R; Hnízda A; Krijt J; Será L; Kožich V
    Biochim Biophys Acta; 2013 Dec; 1834(12):2691-701. PubMed ID: 24100226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein-protein interaction.
    Wirtz M; Berkowitz O; Droux M; Hell R
    Eur J Biochem; 2001 Feb; 268(3):686-93. PubMed ID: 11168407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of bienzyme complex formation of cysteine synthetase from escherichia coli on some properties and kinetics.
    Mino K; Yamanoue T; Sakiyama T; Eisaki N; Matsuyama A; Nakanishi K
    Biosci Biotechnol Biochem; 2000 Aug; 64(8):1628-40. PubMed ID: 10993149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of sulfur starvation on cysteine biosynthesis in T-DNA mutants deficient for compartment-specific serine-acetyltransferase.
    Krueger S; Donath A; Lopez-Martin MC; Hoefgen R; Gotor C; Hesse H
    Amino Acids; 2010 Oct; 39(4):1029-42. PubMed ID: 20379751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulphur metabolism in Paracoccus denitrificans. Purification, properties and regulation of serine transacetylase, O-acetylserine sulphydrylase and beta-cystathionase.
    Burnell JN; Whatley FR
    Biochim Biophys Acta; 1977 Mar; 481(1):246-65. PubMed ID: 14692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana.
    Berkowitz O; Wirtz M; Wolf A; Kuhlmann J; Hell R
    J Biol Chem; 2002 Aug; 277(34):30629-34. PubMed ID: 12063244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanistic model of the cysteine synthase complex.
    Feldman-Salit A; Wirtz M; Hell R; Wade RC
    J Mol Biol; 2009 Feb; 386(1):37-59. PubMed ID: 18801369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The serine acetyltransferase reaction: acetyl transfer from an acylpantothenyl donor to an alcohol.
    Johnson CM; Roderick SL; Cook PF
    Arch Biochem Biophys; 2005 Jan; 433(1):85-95. PubMed ID: 15581568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic and functional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana.
    Jost R; Berkowitz O; Wirtz M; Hopkins L; Hawkesford MJ; Hell R
    Gene; 2000 Aug; 253(2):237-47. PubMed ID: 10940562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.