These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 9692971)
1. Altering the context of an RNA bulge switches the binding specificities of two viral Tat proteins. Smith CA; Crotty S; Harada Y; Frankel AD Biochemistry; 1998 Jul; 37(30):10808-14. PubMed ID: 9692971 [TBL] [Abstract][Full Text] [Related]
2. Structural mimicry of retroviral tat proteins by constrained beta-hairpin peptidomimetics: ligands with high affinity and selectivity for viral TAR RNA regulatory elements. Athanassiou Z; Dias RL; Moehle K; Dobson N; Varani G; Robinson JA J Am Chem Soc; 2004 Jun; 126(22):6906-13. PubMed ID: 15174860 [TBL] [Abstract][Full Text] [Related]
3. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. Aboul-ela F; Karn J; Varani G J Mol Biol; 1995 Oct; 253(2):313-32. PubMed ID: 7563092 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen-bonding contacts in the major groove are required for human immunodeficiency virus type-1 tat protein recognition of TAR RNA. Hamy F; Asseline U; Grasby J; Iwai S; Pritchard C; Slim G; Butler PJ; Karn J; Gait MJ J Mol Biol; 1993 Mar; 230(1):111-23. PubMed ID: 8450529 [TBL] [Abstract][Full Text] [Related]
5. RNA conformation in the Tat-TAR complex determined by site-specific photo-cross-linking. Wang Z; Rana TM Biochemistry; 1996 May; 35(20):6491-9. PubMed ID: 8639596 [TBL] [Abstract][Full Text] [Related]
6. Localized influence of 2'-hydroxyl groups and helix geometry on protein recognition in the RNA major groove. Landt SG; Tipton AR; Frankel AD Biochemistry; 2005 May; 44(17):6547-58. PubMed ID: 15850388 [TBL] [Abstract][Full Text] [Related]
7. Bovine immunodeficiency virus tat gene: cloning of two distinct cDNAs and identification, characterization, and immunolocalization of the tat gene products. Fong SE; Greenwood JD; Williamson JC; Derse D; Pallansch LA; Copeland T; Rasmussen L; Mentzer A; Nagashima K; Tobin G; Gonda MA Virology; 1997 Jul; 233(2):339-57. PubMed ID: 9217057 [TBL] [Abstract][Full Text] [Related]
8. In vitro selection of RNA aptamers that can bind specifically to Tat protein of HIV-1. Yamamoto R; Toyoda S; Viljanen P; Machida K; Nishikawa S; Murakami K; Taira K; Kumar PK Nucleic Acids Symp Ser; 1995; (34):145-6. PubMed ID: 8841594 [TBL] [Abstract][Full Text] [Related]
9. Probing the proximity of the core domain of an HIV-1 Tat fragment in a Tat-TAR complex by affinity cleaving. Huq I; Rana TM Biochemistry; 1997 Oct; 36(41):12592-9. PubMed ID: 9376365 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the solution conformations of unbound and Tat peptide-bound forms of HIV-1 TAR RNA. Long KS; Crothers DM Biochemistry; 1999 Aug; 38(31):10059-69. PubMed ID: 10433713 [TBL] [Abstract][Full Text] [Related]
12. Structure-based design of a dimeric RNA-peptide complex. Campisi DM; Calabro V; Frankel AD EMBO J; 2001 Jan; 20(1-2):178-86. PubMed ID: 11226168 [TBL] [Abstract][Full Text] [Related]
13. A comparative binding study of BIV Tat peptide against its TAR RNA duplex, RNA-DNA heteroduplex and DNA duplex. Tok JB; Bi L Bioorg Med Chem Lett; 2005 Jan; 15(1):129-33. PubMed ID: 15582425 [TBL] [Abstract][Full Text] [Related]
14. Structure-guided peptidomimetic design leads to nanomolar beta-hairpin inhibitors of the Tat-TAR interaction of bovine immunodeficiency virus. Athanassiou Z; Patora K; Dias RL; Moehle K; Robinson JA; Varani G Biochemistry; 2007 Jan; 46(3):741-51. PubMed ID: 17223695 [TBL] [Abstract][Full Text] [Related]
15. A chimeric human immunodeficiency virus type 1 TAR region which mediates high level trans-activation in both rodent and human cells. Newstein M; Lee IS; Venturini DS; Shank PR Virology; 1993 Dec; 197(2):825-8. PubMed ID: 7504372 [TBL] [Abstract][Full Text] [Related]
16. Binding of neomycin to the TAR element of HIV-1 RNA induces dissociation of Tat protein by an allosteric mechanism. Wang S; Huber PW; Cui M; Czarnik AW; Mei HY Biochemistry; 1998 Apr; 37(16):5549-57. PubMed ID: 9548939 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics and solvation dynamics of BIV TAR RNA-Tat peptide interaction. Goel T; Kumar S; Maiti S Mol Biosyst; 2013 Jan; 9(1):88-98. PubMed ID: 23114563 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of HIV-1 replication in viral mutants with altered TAR RNA stem structures. Rounseville MP; Lin HC; Agbottah E; Shukla RR; Rabson AB; Kumar A Virology; 1996 Feb; 216(2):411-7. PubMed ID: 8607271 [TBL] [Abstract][Full Text] [Related]
19. Functional significance of the dinucleotide bulge in stem-loop1 and stem-loop2 of HIV-2 TAR RNA. Rhim H; Rice AP Virology; 1994 Jul; 202(1):202-11. PubMed ID: 8009832 [TBL] [Abstract][Full Text] [Related]
20. Dissection of the proposed base triple in human immunodeficiency virus TAR RNA indicates the importance of the Hoogsteen interaction. Tao J; Chen L; Frankel AD Biochemistry; 1997 Mar; 36(12):3491-5. PubMed ID: 9131998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]