BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9692986)

  • 1. Comparison of the allosteric properties of the Co(II)- and Zn(II)-substituted insulin hexamers.
    Bloom CR; Wu N; Dunn A; Kaarsholm NC; Dunn MF
    Biochemistry; 1998 Aug; 37(31):10937-44. PubMed ID: 9692986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Half-site reactivity, negative cooperativity, and positive cooperativity: quantitative considerations of a plausible model.
    Bloom CR; Kaarsholm NC; Ha J; Dunn MF
    Biochemistry; 1997 Oct; 36(42):12759-65. PubMed ID: 9335532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxylate ions are strong allosteric ligands for the HisB10 sites of the R-state insulin hexamer.
    Huang ST; Choi WE; Bloom C; Leuenberger M; Dunn MF
    Biochemistry; 1997 Aug; 36(32):9878-88. PubMed ID: 9245420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of 2,6- and 2,7-dihydroxynaphthalene to wild-type and E-B13Q insulins: dynamic, equilibrium, and molecular modeling investigations.
    Bloom CR; Heymann R; Kaarsholm NC; Dunn MF
    Biochemistry; 1997 Oct; 36(42):12746-58. PubMed ID: 9335531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic evidence for preexisting T- and R-state insulin hexamer conformations.
    Choi WE; Borchardt D; Kaarsholm NC; Brzovic PS; Dunn MF
    Proteins; 1996 Dec; 26(4):377-90. PubMed ID: 8990494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman signatures of ligand binding and allosteric conformation change in hexameric insulin.
    Ferrari D; Diers JR; Bocian DF; Kaarsholm NC; Dunn MF
    Biopolymers; 2001; 62(5):249-60. PubMed ID: 11745120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the R-state insulin hexamer and its derivatives. The hexamer is stabilized by heterotropic ligand binding interactions.
    Brader ML; Kaarsholm NC; Lee RW; Dunn MF
    Biochemistry; 1991 Jul; 30(27):6636-45. PubMed ID: 2065051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural signatures of the complex formed between 3-nitro-4-hydroxybenzoate and the Zn(II)-substituted R(6) insulin hexamer.
    Olsen HB; Leuenberger-Fisher MR; Kadima W; Borchardt D; Kaarsholm NC; Dunn MF
    Protein Sci; 2003 Sep; 12(9):1902-13. PubMed ID: 12930990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural asymmetry and half-site reactivity in the T to R allosteric transition of the insulin hexamer.
    Brzović PS; Choi WE; Borchardt D; Kaarsholm NC; Dunn MF
    Biochemistry; 1994 Nov; 33(44):13057-69. PubMed ID: 7947711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic evidence for an intermediate in the T6 to R6 allosteric transition of the Co(II)-substituted insulin hexamer.
    Gross L; Dunn MF
    Biochemistry; 1992 Feb; 31(5):1295-301. PubMed ID: 1736988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of metal ions in the T- to R-allosteric transition in the insulin hexamer.
    Kadima W
    Biochemistry; 1999 Oct; 38(41):13443-52. PubMed ID: 10521251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer -- a review.
    Dunn MF
    Biometals; 2005 Aug; 18(4):295-303. PubMed ID: 16158220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions.
    Choi WE; Brader ML; Aguilar V; Kaarsholm NC; Dunn MF
    Biochemistry; 1993 Nov; 32(43):11638-45. PubMed ID: 8218231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions.
    Rahuel-Clermont S; French CA; Kaarsholm NC; Dunn MF; Chou CI
    Biochemistry; 1997 May; 36(19):5837-45. PubMed ID: 9153424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin allosteric behavior: detection, identification, and quantification of allosteric states via 19F NMR.
    Bonaccio M; Ghaderi N; Borchardt D; Dunn MF
    Biochemistry; 2005 May; 44(21):7656-68. PubMed ID: 15909980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The T to R transition in the copper(II)-substituted insulin hexamer. Anion complexes of the R-state species exhibiting type 1 and type 2 spectral characteristics.
    Brader ML; Borchardt D; Dunn MF
    Biochemistry; 1992 May; 31(19):4691-6. PubMed ID: 1316158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical modeling of phenolic ligand binding to 2Zn--insulin hexamers.
    Birnbaum DT; Dodd SW; Saxberg BE; Varshavsky AD; Beals JM
    Biochemistry; 1996 Apr; 35(17):5366-78. PubMed ID: 8611526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer.
    Huus K; Havelund S; Olsen HB; Sigurskjold BW; van de Weert M; Frokjaer S
    Biochemistry; 2006 Mar; 45(12):4014-24. PubMed ID: 16548529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc site redesign in T4 gene 32 protein: structure and stability of cobalt(II) complexes formed by wild-type and metal ligand substitution mutants.
    Guo J; Giedroc DP
    Biochemistry; 1997 Jan; 36(4):730-42. PubMed ID: 9020770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic determination of the binding affinity of zinc to the DNA-binding domains of nuclear hormone receptors.
    Payne JC; Rous BW; Tenderholt AL; Godwin HA
    Biochemistry; 2003 Dec; 42(48):14214-24. PubMed ID: 14640689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.