BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1024 related articles for article (PubMed ID: 9692994)

  • 1. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a "push-pull" mechanism for proton transfer in aldo-keto reductases.
    Schlegel BP; Jez JM; Penning TM
    Biochemistry; 1998 Mar; 37(10):3538-48. PubMed ID: 9521675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering steroid 5 beta-reductase activity into rat liver 3 alpha-hydroxysteroid dehydrogenase.
    Jez JM; Penning TM
    Biochemistry; 1998 Jul; 37(27):9695-703. PubMed ID: 9657682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of 3 alpha-hydroxysteroid dehydrogenase.
    Penning TM; Bennett MJ; Smith-Hoog S; Schlegel BP; Jez JM; Lewis M
    Steroids; 1997 Jan; 62(1):101-11. PubMed ID: 9029723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular determinants of steroid recognition and catalysis in aldo-keto reductases. Lessons from 3alpha-hydroxysteroid dehydrogenase.
    Penning TM
    J Steroid Biochem Mol Biol; 1999; 69(1-6):211-25. PubMed ID: 10418995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site.
    Pival SL; Klimacek M; Nidetzky B
    Biochem J; 2009 Jun; 421(1):43-9. PubMed ID: 19368528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies.
    Kratzer R; Nidetzky B
    Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The arginine 276 anchor for NADP(H) dictates fluorescence kinetic transients in 3 alpha-hydroxysteroid dehydrogenase, a representative aldo-keto reductase.
    Ratnam K; Ma H; Penning TM
    Biochemistry; 1999 Jun; 38(24):7856-64. PubMed ID: 10387026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alanine scanning mutagenesis of the testosterone binding site of rat 3 alpha-hydroxysteroid dehydrogenase demonstrates contact residues influence the rate-determining step.
    Heredia VV; Cooper WC; Kruger RG; Jin Y; Penning TM
    Biochemistry; 2004 May; 43(19):5832-41. PubMed ID: 15134457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic roles of Ser-114, Tyr-155, and Lys-159 in 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni.
    Hwang CC; Chang YH; Hsu CN; Hsu HH; Li CW; Pon HI
    J Biol Chem; 2005 Feb; 280(5):3522-8. PubMed ID: 15572373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression and mutagenesis of the cDNA for rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. Role of cysteines and tyrosines in catalysis.
    Pawlowski JE; Penning TM
    J Biol Chem; 1994 May; 269(18):13502-10. PubMed ID: 8175784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering steroid hormone specificity into aldo-keto reductases.
    Penning TM; Ma H; Jez JM
    Chem Biol Interact; 2001 Jan; 130-132(1-3):659-71. PubMed ID: 11306084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rabbit 3-hydroxyhexobarbital dehydrogenase is a NADPH-preferring reductase with broad substrate specificity for ketosteroids, prostaglandin D₂, and other endogenous and xenobiotic carbonyl compounds.
    Endo S; Matsunaga T; Matsumoto A; Arai Y; Ohno S; El-Kabbani O; Tajima K; Bunai Y; Yamano S; Hara A; Kitade Y
    Biochem Pharmacol; 2013 Nov; 86(9):1366-75. PubMed ID: 23994167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steroid-binding site residues dictate optimal substrate positioning in rat 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD or AKR1C9).
    Heredia VV; Kruger RG; Penning TM
    Chem Biol Interact; 2003 Feb; 143-144():393-400. PubMed ID: 12604226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of Tyr(91) and Lys(162) in general acid-base catalysis in the pigeon NADP+-dependent malic enzyme.
    Kuo CC; Lin KY; Hsu YJ; Lin SY; Lin YT; Chang GG; Chou WY
    Biochem J; 2008 May; 411(3):467-73. PubMed ID: 18248329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of remote substrate binding energy to the enzymatic rate acceleration for 3α-hydroxysteroid dehydrogenase/carbonyl reductase.
    Hwang CC; Chang PR; Wang TP
    Chem Biol Interact; 2017 Oct; 276():133-140. PubMed ID: 28137513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the substrate binding site in rat liver 3alpha-hydroxysteroid/dihydrodiol dehydrogenase. The roles of tryptophans in ligand binding and protein fluorescence.
    Jez JM; Schlegel BP; Penning TM
    J Biol Chem; 1996 Nov; 271(47):30190-8. PubMed ID: 8939970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation of nicotinamide pocket residues in rat liver 3 alpha-hydroxysteroid dehydrogenase reveals different modes of cofactor binding.
    Ma H; Ratnam K; Penning TM
    Biochemistry; 2000 Jan; 39(1):102-9. PubMed ID: 10625484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic roles of tyrosine 149 and serine 124 in UDP-galactose 4-epimerase from Escherichia coli.
    Liu Y; Thoden JB; Kim J; Berger E; Gulick AM; Ruzicka FJ; Holden HM; Frey PA
    Biochemistry; 1997 Sep; 36(35):10675-84. PubMed ID: 9271498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.