These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1103 related articles for article (PubMed ID: 9693000)
1. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids. Vasil'ev S; Bruce D Biochemistry; 1998 Aug; 37(31):11046-54. PubMed ID: 9693000 [TBL] [Abstract][Full Text] [Related]
2. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH. Bruce D; Samson G; Carpenter C Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence quenching by chlorophyll cations in photosystem II. Schweitzer RH; Brudvig GW Biochemistry; 1997 Sep; 36(38):11351-9. PubMed ID: 9298954 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances. Stroch M; Cajánek M; Kalina J; Spunda V J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349 [TBL] [Abstract][Full Text] [Related]
5. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Ruban AV; Young AJ; Horton P Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246 [TBL] [Abstract][Full Text] [Related]
6. The role of hydrogen bonds for the multiphasic P680(+)* reduction by YZ in photosystem II with intact oxyen evolution capacity. Analysis of kinetic H/D isotope exchange effects. Christen G; Renger G Biochemistry; 1999 Feb; 38(7):2068-77. PubMed ID: 10026289 [TBL] [Abstract][Full Text] [Related]
7. Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana by time-resolved fluorometric analysis. Steffen R; Eckert HJ; Kelly AA; Dörmann P; Renger G Biochemistry; 2005 Mar; 44(9):3123-33. PubMed ID: 15736922 [TBL] [Abstract][Full Text] [Related]
8. Functional architecture of the major light-harvesting complex from higher plants. Formaggio E; Cinque G; Bassi R J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731 [TBL] [Abstract][Full Text] [Related]
9. Unique binding site for Mn2+ ion responsible for reducing an oxidized YZ tyrosine in manganese-depleted photosystem II membranes. Ono TA; Mino H Biochemistry; 1999 Jul; 38(27):8778-85. PubMed ID: 10393553 [TBL] [Abstract][Full Text] [Related]
10. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Holt NE; Fleming GR; Niyogi KK Biochemistry; 2004 Jul; 43(26):8281-9. PubMed ID: 15222740 [TBL] [Abstract][Full Text] [Related]
11. The relationship between the binding of dicyclohexylcarbodiimide and quenching of chlorophyll fluorescence in the light-harvesting proteins of photosystem II. Ruban AV; Pesaresi P; Wacker U; Irrgang KD; Bassi R; Horton P Biochemistry; 1998 Aug; 37(33):11586-91. PubMed ID: 9708995 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence decay kinetics of chlorophyll in photosynthetic membranes. Karukstis KK; Sauer K J Cell Biochem; 1983; 23(1-4):131-58. PubMed ID: 6373794 [TBL] [Abstract][Full Text] [Related]
13. A time-resolved FTIR difference study of the plastoquinone QA and redox-active tyrosine YZ interactions in photosystem II. Zhang H; Razeghifard MR; Fischer G; Wydrzynski T Biochemistry; 1997 Sep; 36(39):11762-8. PubMed ID: 9305966 [TBL] [Abstract][Full Text] [Related]
14. Energy and electron transfer in photosystem II of a chlorophyll b-containing Synechocystis sp. PCC 6803 mutant. Vavilin D; Xu H; Lin S; Vermaas W Biochemistry; 2003 Feb; 42(6):1731-46. PubMed ID: 12578388 [TBL] [Abstract][Full Text] [Related]
15. Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. Allakhverdiev SI; Klimov VV; Carpentier R Biochemistry; 1997 Apr; 36(14):4149-54. PubMed ID: 9100008 [TBL] [Abstract][Full Text] [Related]
16. Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Boekema EJ; van Roon H; Calkoen F; Bassi R; Dekker JP Biochemistry; 1999 Feb; 38(8):2233-9. PubMed ID: 10029515 [TBL] [Abstract][Full Text] [Related]
17. [Photoinduced reactivation of photosystem II in Chlorella after prolong incubation without light]. Chemeris IuK; Venediktov PS; Rubin AB Biofizika; 2000; 45(3):484-90. PubMed ID: 10872060 [TBL] [Abstract][Full Text] [Related]
18. Light emission originating from photosystem II radical pair recombination is sensitive to zeaxanthin related non-photochemical quenching (NPQ). Wagner H; Gilbert M; Goss R; Wilhelm C J Photochem Photobiol B; 2006 Jun; 83(3):172-9. PubMed ID: 16488152 [TBL] [Abstract][Full Text] [Related]
19. Time-resolved absorption and emission show that the CP43' antenna ring of iron-stressed synechocystis sp. PCC6803 is efficiently coupled to the photosystem I reaction center core. Melkozernov AN; Bibby TS; Lin S; Barber J; Blankenship RE Biochemistry; 2003 Apr; 42(13):3893-903. PubMed ID: 12667080 [TBL] [Abstract][Full Text] [Related]
20. Interaction of exogenous quinones with membranes of higher plant chloroplasts: modulation of quinone capacities as photochemical and non-photochemical quenchers of energy in Photosystem II during light-dark transitions. Bukhov NG; Sridharan G; Egorova EA; Carpentier R Biochim Biophys Acta; 2003 Jun; 1604(2):115-23. PubMed ID: 12765768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]