These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 9693103)
1. Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Xu F; Berka RM; Wahleithner JA; Nelson BA; Shuster JR; Brown SH; Palmer AE; Solomon EI Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):63-70. PubMed ID: 9693103 [TBL] [Abstract][Full Text] [Related]
2. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Xu F; Shin W; Brown SH; Wahleithner JA; Sundaram UM; Solomon EI Biochim Biophys Acta; 1996 Feb; 1292(2):303-11. PubMed ID: 8597577 [TBL] [Abstract][Full Text] [Related]
3. Targeted mutations in a Trametes villosa laccase. Axial perturbations of the T1 copper. Xu F; Palmer AE; Yaver DS; Berka RM; Gambetta GA; Brown SH; Solomon EI J Biol Chem; 1999 Apr; 274(18):12372-5. PubMed ID: 10212209 [TBL] [Abstract][Full Text] [Related]
4. Dioxygen reactivity of laccase: dependence on laccase source, pH, and anion inhibition. Xu F Appl Biochem Biotechnol; 2001 Aug; 95(2):125-33. PubMed ID: 11694062 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Ducros V; Brzozowski AM; Wilson KS; Brown SH; Ostergaard P; Schneider P; Yaver DS; Pedersen AH; Davies GJ Nat Struct Biol; 1998 Apr; 5(4):310-6. PubMed ID: 9546223 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic characterization of the Leu513His variant of fungal laccase: effect of increased axial ligand interaction on the geometric and electronic structure of the type 1 Cu site. Palmer AE; Szilagyi RK; Cherry JR; Jones A; Xu F; Solomon EI Inorg Chem; 2003 Jun; 42(13):4006-17. PubMed ID: 12817956 [TBL] [Abstract][Full Text] [Related]
7. Azide binding to the trinuclear copper center in laccase and ascorbate oxidase. Gromov I; Marchesini A; Farver O; Pecht I; Goldfarb D Eur J Biochem; 1999 Dec; 266(3):820-30. PubMed ID: 10583375 [TBL] [Abstract][Full Text] [Related]
8. Unmediated heterogeneous electron transfer reaction of ascorbate oxidase and laccase at a gold electrode. Santucci R; Ferri T; Morpurgo L; Savini I; Avigliano L Biochem J; 1998 Jun; 332 ( Pt 3)(Pt 3):611-5. PubMed ID: 9620861 [TBL] [Abstract][Full Text] [Related]
9. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. Xu F J Biol Chem; 1997 Jan; 272(2):924-8. PubMed ID: 8995383 [TBL] [Abstract][Full Text] [Related]
10. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Sakurai T; Kataoka K Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447 [TBL] [Abstract][Full Text] [Related]
11. Oxidative turnover increases the rate constant and extent of intramolecular electron transfer in the multicopper enzymes, ascorbate oxidase and laccase. Tollin G; Meyer TE; Cusanovich MA; Curir P; Marchesini A Biochim Biophys Acta; 1993 Dec; 1183(2):309-14. PubMed ID: 8268195 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate. Granja-Travez RS; Wilkinson RC; Persinoti GF; Squina FM; Fülöp V; Bugg TDH FEBS J; 2018 May; 285(9):1684-1700. PubMed ID: 29575798 [TBL] [Abstract][Full Text] [Related]
13. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. Martins LO; Soares CM; Pereira MM; Teixeira M; Costa T; Jones GH; Henriques AO J Biol Chem; 2002 May; 277(21):18849-59. PubMed ID: 11884407 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopy and reactivity of the type 1 copper site in Fet3p from Saccharomyces cerevisiae: correlation of structure with reactivity in the multicopper oxidases. Machonkin TE; Quintanar L; Palmer AE; Hassett R; Severance S; Kosman DJ; Solomon EI J Am Chem Soc; 2001 Jun; 123(23):5507-17. PubMed ID: 11389633 [TBL] [Abstract][Full Text] [Related]
15. Laccase-catalysed iodide oxidation in presence of methyl syringate. Kulys J; Bratkovskaja I; Vidziunaite R Biotechnol Bioeng; 2005 Oct; 92(1):124-8. PubMed ID: 16080184 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Berka RM; Schneider P; Golightly EJ; Brown SH; Madden M; Brown KM; Halkier T; Mondorf K; Xu F Appl Environ Microbiol; 1997 Aug; 63(8):3151-7. PubMed ID: 9251203 [TBL] [Abstract][Full Text] [Related]
17. Upward shift of the pH optimum of Acremonium ascorbate oxidase. Sugino M; Kajita S; Banno K; Shirai T; Yamane T; Kato M; Kobayashi T; Tsukagoshi N Biochim Biophys Acta; 2002 Apr; 1596(1):36-46. PubMed ID: 11983419 [TBL] [Abstract][Full Text] [Related]
18. Myrothecium verrucaria bilirubin oxidase and its mutants for potential copper ligands. Shimizu A; Kwon JH; Sasaki T; Satoh T; Sakurai N; Sakurai T; Yamaguchi S; Samejima T Biochemistry; 1999 Mar; 38(10):3034-42. PubMed ID: 10074356 [TBL] [Abstract][Full Text] [Related]
19. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Li K; Xu F; Eriksson KE Appl Environ Microbiol; 1999 Jun; 65(6):2654-60. PubMed ID: 10347057 [TBL] [Abstract][Full Text] [Related]
20. Crystal structures of the Met148Leu and Ser86Asp mutants of rusticyanin from Thiobacillus ferrooxidans: insights into the structural relationship with the cupredoxins and the multi copper proteins. Kanbi LD; Antonyuk S; Hough MA; Hall JF; Dodd FE; Hasnain SS J Mol Biol; 2002 Jul; 320(2):263-75. PubMed ID: 12079384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]