These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9693719)

  • 1. Evolution of P-type ATPases.
    Palmgren MG; Axelsen KB
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):37-45. PubMed ID: 9693719
    [No Abstract]   [Full Text] [Related]  

  • 2. Structure of the actuator domain from the Archaeoglobus fulgidus Cu(+)-ATPase.
    Sazinsky MH; Agarwal S; Argüello JM; Rosenzweig AC
    Biochemistry; 2006 Aug; 45(33):9949-55. PubMed ID: 16906753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases.
    Sperling D; Kappler U; Wynen A; Dahl C; Trüper HG
    FEMS Microbiol Lett; 1998 May; 162(2):257-64. PubMed ID: 9627961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of substrate specificities in the P-type ATPase superfamily.
    Axelsen KB; Palmgren MG
    J Mol Evol; 1998 Jan; 46(1):84-101. PubMed ID: 9419228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of Archaeoglobus fulgidus Cu(+)-ATPase CopA by cysteine.
    Yang Y; Mandal AK; Bredeston LM; González-Flecha FL; Argüello JM
    Biochim Biophys Acta; 2007 Mar; 1768(3):495-501. PubMed ID: 17064659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase.
    Bredeston LM; González Flecha FL
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1471-8. PubMed ID: 27086711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overlapping expression patterns and functions of three paralogous P5B ATPases in Caenorhabditis elegans.
    Zielich J; Tzima E; Schröder EA; Jemel F; Conradt B; Lambie EJ
    PLoS One; 2018; 13(3):e0194451. PubMed ID: 29547664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning of a P-type ATPase gene from the cyanobacterium Synechocystis sp. PCC 6803. Homology to eukaryotic Ca(2+)-ATPases.
    Geisler M; Richter J; Schumann J
    J Mol Biol; 1993 Dec; 234(4):1284-9. PubMed ID: 8263933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a new AAA+ protein from archaea.
    Summer H; Bruderer R; Weber-Ban E
    J Struct Biol; 2006 Oct; 156(1):120-9. PubMed ID: 16584891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a cysteine residue important for the ATPase activity of C. elegans fidgetin homologue.
    Yakushiji Y; Yamanaka K; Ogura T
    FEBS Lett; 2004 Dec; 578(1-2):191-7. PubMed ID: 15581640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unexpectedly high degree of specialization and a widespread involvement in sterol metabolism among the C. elegans putative aminophospholipid translocases.
    Lyssenko NN; Miteva Y; Gilroy S; Hanna-Rose W; Schlegel RA
    BMC Dev Biol; 2008 Oct; 8():96. PubMed ID: 18831765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal stability of CopA, a polytopic membrane protein from the hyperthermophile Archaeoglobus fulgidus.
    Cattoni DI; González Flecha FL; Argüello JM
    Arch Biochem Biophys; 2008 Mar; 471(2):198-206. PubMed ID: 18187034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases.
    Djuranovic S; Hartmann MD; Habeck M; Ursinus A; Zwickl P; Martin J; Lupas AN; Zeth K
    Mol Cell; 2009 Jun; 34(5):580-90. PubMed ID: 19481487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching.
    Ye Q; Rosenberg SC; Moeller A; Speir JA; Su TY; Corbett KD
    Elife; 2015 Apr; 4():. PubMed ID: 25918846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning of a cDNA encoding a putative metal-transporting P-type ATPase from Arabidopsis thaliana.
    Tabata K; Kashiwagi S; Mori H; Ueguchi C; Mizuno T
    Biochim Biophys Acta; 1997 May; 1326(1):1-6. PubMed ID: 9188794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenylalanine catabolism in Archaeoglobus fulgidus VC-16.
    Parthasarathy A; Kahnt J; Chowdhury NP; Buckel W
    Arch Microbiol; 2013 Dec; 195(12):781-97. PubMed ID: 24096454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of alanine dehydrogenase from Archaeoglobus: active site analysis and relation to bacterial cyclodeaminases and mammalian mu crystallin.
    Gallagher DT; Monbouquette HG; Schröder I; Robinson H; Holden MJ; Smith NN
    J Mol Biol; 2004 Sep; 342(1):119-30. PubMed ID: 15313611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The p-type ATPase superfamily.
    Chan H; Babayan V; Blyumin E; Gandhi C; Hak K; Harake D; Kumar K; Lee P; Li TT; Liu HY; Lo TC; Meyer CJ; Stanford S; Zamora KS; Saier MH
    J Mol Microbiol Biotechnol; 2010; 19(1-2):5-104. PubMed ID: 20962537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.