BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9693993)

  • 1. Betaine activates a hyperpolarizing chloride conductance in squid olfactory receptor neurons.
    Danaceau JP; Lucero MT
    J Comp Physiol A; 1998 Aug; 183(2):225-35. PubMed ID: 9693993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixture interactions of glutamate and betaine in single squid olfactory neurons.
    Danaceau JP; Lucero MT
    J Comp Physiol A; 2000 Jan; 186(1):57-67. PubMed ID: 10659043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium signalling in squid olfactory receptor neurons.
    Piper DR; Lucero MT
    Biol Signals Recept; 1999; 8(6):329-37. PubMed ID: 10592375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a Na+-dependent betaine transporter with Cl- channel properties in squid motor neurons.
    Petty CN; Lucero MT
    J Neurophysiol; 1999 Apr; 81(4):1567-74. PubMed ID: 10200192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An odorant-suppressed Cl- conductance in lobster olfactory receptor cells.
    Doolin RE; Zhainazarov AB; Ache BW
    J Comp Physiol A; 2001 Jul; 187(6):477-87. PubMed ID: 11548994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of anionic and cationic currents leads to a voltage dependence in the odor response of olfactory receptor neurons.
    Firestein S; Shepherd GM
    J Neurophysiol; 1995 Feb; 73(2):562-7. PubMed ID: 7760118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic AMP cascade mediates the inhibitory odor response of isolated toad olfactory receptor neurons.
    Madrid R; Delgado R; Bacigalupo J
    J Neurophysiol; 2005 Sep; 94(3):1781-8. PubMed ID: 15817646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction.
    Dubin AE; Dionne VE
    J Gen Physiol; 1994 Feb; 103(2):181-201. PubMed ID: 8189204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses to prolonged odour stimulation in frog olfactory receptor cells.
    Reisert J; Matthews HR
    J Physiol; 2001 Jul; 534(Pt 1):179-91. PubMed ID: 11433001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2(+)-dependent adaptive properties in the solitary olfactory receptor cell of the newt.
    Kurahashi T; Shibuya T
    Brain Res; 1990 May; 515(1-2):261-8. PubMed ID: 2113412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemosensory responses in isolated olfactory receptor neurons from Necturus maculosus.
    Dionne VE
    J Gen Physiol; 1992 Mar; 99(3):415-33. PubMed ID: 1588301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal development of cyclic nucleotide-gated and Ca2+ -activated Cl- currents in isolated mouse olfactory sensory neurons.
    Boccaccio A; Menini A
    J Neurophysiol; 2007 Jul; 98(1):153-60. PubMed ID: 17460108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-activated chloride conductance in frog olfactory cilia.
    Kleene SJ; Gesteland RC
    J Neurosci; 1991 Nov; 11(11):3624-9. PubMed ID: 1941099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation, inhibition, and suppression by odors in isolated toad and rat olfactory receptor neurons.
    Sanhueza M; Schmachtenberg O; Bacigalupo J
    Am J Physiol Cell Physiol; 2000 Jul; 279(1):C31-9. PubMed ID: 10898714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of the chloride current in olfactory transduction.
    Kleene SJ
    Neuron; 1993 Jul; 11(1):123-32. PubMed ID: 8393322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of Xenopus laevis water nose to water-soluble and volatile odorants.
    Iida A; Kashiwayanagi M
    J Gen Physiol; 1999 Jul; 114(1):85-92. PubMed ID: 10398694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-dependent and odorant-regulated currents in isolated olfactory receptor neurons of the channel catfish.
    Miyamoto T; Restrepo D; Teeter JH
    J Gen Physiol; 1992 Apr; 99(4):505-29. PubMed ID: 1597676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outwardly rectifying chloride current in rabbit osteoclasts is activated by hyposmotic stimulation.
    Kelly ME; Dixon SJ; Sims SM
    J Physiol; 1994 Mar; 475(3):377-89. PubMed ID: 8006823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second messenger signaling in olfactory transduction.
    Restrepo D; Teeter JH; Schild D
    J Neurobiol; 1996 May; 30(1):37-48. PubMed ID: 8727981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrogenic Na(+)/Ca(2+) exchange. A novel amplification step in squid olfactory transduction.
    Danaceau JP; Lucero MT
    J Gen Physiol; 2000 Jun; 115(6):759-68. PubMed ID: 10828249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.