These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9694646)

  • 1. Preparation of photonic crystals made of air spheres in titania.
    Wijnhoven JEGJ; Vos WL
    Science; 1998 Aug; 281(5378):802-4. PubMed ID: 9694646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically switchable photonic crystals based on liquid-crystal-infiltrated TiO
    Zhang Y; Li K; Su F; Cai Z; Liu J; Wu X; He H; Yin Z; Wang L; Wang B; Tian Y; Luo D; Sun XW; Liu YJ
    Opt Express; 2019 May; 27(11):15391-15398. PubMed ID: 31163736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rutile TiO2 inverse opal with photonic bandgap in the UV-visible range.
    Li Y; Piret F; Léonard T; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(1):43-8. PubMed ID: 20466381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable Synthesis of Inverse Opal TiO
    Liu S; Zhou L; Zhang J; Lei J
    Chem Asian J; 2019 Jan; 14(2):322-327. PubMed ID: 30507065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The influential factors of MOCVD growth of InP in opals].
    Tan CH; Fan GH; Huang XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2763-7. PubMed ID: 19248478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic bandgap of inverse opals prepared from core-shell spheres.
    Liu BT; Lin YL; Huang SX
    Nanoscale Res Lett; 2012 Aug; 7(1):457. PubMed ID: 22894600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonaqueous sol-gel chemistry applied to atomic layer deposition: tuning of photonic band gap properties of silica opals.
    Marichy C; Dechézelles JF; Willinger MG; Pinna N; Ravaine S; Vallée R
    Nanoscale; 2010 May; 2(5):786-92. PubMed ID: 20648325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titania Photonic Crystals with Precise Photonic Band Gap Position via Anodizing with Voltage versus Optical Path Length Modulation.
    Ermolaev GA; Kushnir SE; Sapoletova NA; Napolskii KS
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31018593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor.
    Cai Z; Teng J; Xiong Z; Li Y; Li Q; Lu X; Zhao XS
    Langmuir; 2011 Apr; 27(8):5157-64. PubMed ID: 21413750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure.
    Kubo S; Gu ZZ; Takahashi K; Fujishima A; Segawa H; Sato O
    J Am Chem Soc; 2004 Jul; 126(26):8314-9. PubMed ID: 15225074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of inverted opal photonic band gap crystals with stacking disorder.
    Wang ZL; Chan CT; Zhang WY; Chen Z; Ming NB; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016612. PubMed ID: 12636630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of disorder on the optically amplified photocatalytic efficiency of titania inverse opals.
    Chen JI; Freymann Gv; Kitaev V; Ozin GA
    J Am Chem Soc; 2007 Feb; 129(5):1196-202. PubMed ID: 17263401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of nanoparticle-based metallodielectric inverse opals.
    Wang D; Li J; Chan CT; Salgueiriño-Maceira V; Liz-Marzán LM; Romanov S; Caruso F
    Small; 2005 Jan; 1(1):122-30. PubMed ID: 17193362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon structures with three-dimensional periodicity at optical wavelengths.
    Zakhidov AA; Baughman RH; Iqbal Z; Cui C; Khayrullin I; Dantas SO; Marti J; Ralchenko VG
    Science; 1998 Oct; 282(5390):897-901. PubMed ID: 9794752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of three-dimensional nanostructured titania materials by prism holographic lithography and the sol-gel reaction.
    Park SG; Jeon TY; Yang SM
    Langmuir; 2013 Aug; 29(31):9620-5. PubMed ID: 23863042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-alignment of liquid crystals in three-dimensional photonic crystals.
    Gottardo S; Burresi M; Geobaldo F; Pallavidino L; Giorgis F; Wiersma DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):040702. PubMed ID: 17155014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lotus Seedpod Inspiration: Particle-Nested Double-Inverse Opal Films with Fast and Reversible Structural Color Switching for Information Security.
    Zhou C; Qi Y; Zhang S; Niu W; Wu S; Ma W; Tang B
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26384-26393. PubMed ID: 34038074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diamond-Structured Photonic Crystals with Graded Air Spheres Radii.
    Liang Q; Li D; Han H
    Materials (Basel); 2012 May; 5(5):851-856. PubMed ID: 28817011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strongly photonic macroporous gallium phosphide networks.
    Schuurmans FJ; Vanmaekelbergh D; van de Lagemaat J ; Lagendijk A
    Science; 1999 Apr; 284(5411):141-3. PubMed ID: 10102813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.