These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 9695272)

  • 1. Assessment of bone density using ultrasonic backscatter.
    Wear KA; Garra BS
    Ultrasound Med Biol; 1998 Jun; 24(5):689-95. PubMed ID: 9695272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backscatter measurement of cancellous bone using the ultrasound transit time spectroscopy.
    Jia Y; Han S; Li B; Liu C; Ta D
    J Acoust Soc Am; 2024 Apr; 155(4):2670-2686. PubMed ID: 38639562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic backscatter difference measurements of cancellous bone from the human femur: Relation to bone mineral density and microstructure.
    Hoffmeister BK; Viano AM; Huang J; Fairbanks LC; Ebron SC; Moore JT; Ankersen JP; Huber MT; Diaz AA
    J Acoust Soc Am; 2018 Jun; 143(6):3642. PubMed ID: 29960442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Combined Ultrasonic Backscatter Parameter for Bone Status Evaluation in Neonates.
    Mao W; Du Y; Liu C; Li B; Ta D; Chen C; Zhang R
    Comput Math Methods Med; 2020; 2020():3187268. PubMed ID: 32411279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic characterization of human trabecular bone microstructure.
    Hakulinen MA; Day JS; Töyräs J; Weinans H; Jurvelin JS
    Phys Med Biol; 2006 Mar; 51(6):1633-48. PubMed ID: 16510968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone.
    Li Y; Li B; Li Y; Liu C; Xu F; Zhang R; Ta D; Wang W
    Ultrason Imaging; 2019 Sep; 41(5):271-289. PubMed ID: 31307317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone.
    Liu C; Li B; Diwu Q; Li Y; Zhang R; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2311-2321. PubMed ID: 30575524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure.
    Chaffaî S; Peyrin F; Nuzzo S; Porcher R; Berger G; Laugier P
    Bone; 2002 Jan; 30(1):229-37. PubMed ID: 11792590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone.
    Hoffmeister BK; Whitten SA; Kaste SC; Rho JY
    Osteoporos Int; 2002 Jan; 13(1):26-32. PubMed ID: 11878452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic Bone Assessment: Ability of Apparent Backscatter Techniques to Detect Changes in the Microstructure of Human Cancellous Bone.
    Viano AM; Ankersen JP; Hoffmeister BK; Huang J; Fairbanks LC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3309-3325. PubMed ID: 34138705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone.
    Hoffmeister BK; Holt AP; Kaste SC
    Phys Med Biol; 2011 Oct; 56(19):6243-55. PubMed ID: 21896966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistics of the envelope of ultrasonic backscatter from human trabecular bone.
    Litniewski J; Cieslik L; Wojcik J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):2224-32. PubMed ID: 21973377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backscatter-difference Measurements of Cancellous Bone Using an Ultrasonic Imaging System.
    Hoffmeister BK; Smathers MR; Miller CJ; McPherson JA; Thurston CR; Spinolo PL; Lee SR
    Ultrason Imaging; 2016 Jul; 38(4):285-97. PubMed ID: 26416839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of Cortical Bone Microstructure From Ultrasound Backscatter.
    Iori G; Du J; Hackenbeck J; Kilappa V; Raum K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1081-1095. PubMed ID: 33104498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 mhz.
    Hoffmeister BK; Johnson DP; Janeski JA; Keedy DA; Steinert BW; Viano AM; Kaste SC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1442-52. PubMed ID: 18986933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of transducer position on ultrasonic backscatter measurements of cancellous bone.
    Hoffmeister BK; Lawler BC; Viano AM; Mobley J
    J Acoust Soc Am; 2023 Nov; 154(5):2858-2868. PubMed ID: 37930178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between the combination of apparent integrated backscatter-spectral centroid shift and bone mineral density.
    Tang T; Liu C; Xu F; Ta D
    J Med Ultrason (2001); 2016 Apr; 43(2):167-73. PubMed ID: 26753614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Comparison of Backscatter Techniques for Ultrasonic Bone Assessment at the Femoral Neck.
    Hoffmeister BK; Delahunt SI; Downey KL; Viano AM; Thomas DM; Georgiou LA; Gray AJ; Newman WR; Main EN; Pirro G
    Ultrasound Med Biol; 2022 Jun; 48(6):997-1009. PubMed ID: 35282987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of marrow on the high frequency ultrasonic properties of cancellous bone.
    Hoffmeister BK; Auwarter JA; Rho JY
    Phys Med Biol; 2002 Sep; 47(18):3419-27. PubMed ID: 12375829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function.
    Hoffmeister BK; Mcpherson JA; Smathers MR; Spinolo PL; Sellers ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2115-25. PubMed ID: 26683412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.