These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9695276)

  • 21. Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear.
    Lokhandwalla M; McAteer JA; Williams JC; Sturtevant B
    Phys Med Biol; 2001 Apr; 46(4):1245-64. PubMed ID: 11324963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shock-wave-induced jetting of micron-size bubbles.
    Ohl CD; Ikink R
    Phys Rev Lett; 2003 May; 90(21):214502. PubMed ID: 12786557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy.
    Zhong P; Tong HL; Cocks FH; Preminger GM
    J Endourol; 1997 Feb; 11(1):55-61. PubMed ID: 9048300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro study of the mechanical effects of shock-wave lithotripsy.
    Howard D; Sturtevant B
    Ultrasound Med Biol; 1997; 23(7):1107-22. PubMed ID: 9330454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of shock wave pattern and cavitation bubble size on tissue damage during ureteroscopic electrohydraulic lithotripsy.
    Vorreuther R; Corleis R; Klotz T; Bernards P; Engelmann U
    J Urol; 1995 Mar; 153(3 Pt 1):849-53. PubMed ID: 7861549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The modelling of the cavitation processes during the focusing of the shock wave in an electrodynamic lithotriptor].
    Andriianov IuV; Li AA; Teslenko VS
    Vopr Kurortol Fizioter Lech Fiz Kult; 1992; (4):42-8. PubMed ID: 1455798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL.
    Zhong P; Zhou Y; Zhu S
    Ultrasound Med Biol; 2001 Jan; 27(1):119-34. PubMed ID: 11295278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bubble proliferation in the cavitation field of a shock wave lithotripter.
    Pishchalnikov YA; Williams JC; McAteer JA
    J Acoust Soc Am; 2011 Aug; 130(2):EL87-93. PubMed ID: 21877776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasound-Induced Bubble Clusters in Tissue-Mimicking Agar Phantoms.
    Movahed P; Kreider W; Maxwell AD; Dunmire B; Freund JB
    Ultrasound Med Biol; 2017 Oct; 43(10):2318-2328. PubMed ID: 28739379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device.
    Choi MJ; Kang G; Huh JS
    Biomed Eng Lett; 2017 May; 7(2):143-151. PubMed ID: 30603161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy.
    Wang KG
    Int J Numer Method Biomed Eng; 2017 Oct; 33(10):. PubMed ID: 27885825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dynamics of a non-equilibrium bubble near bio-materials.
    Ohl SW; Klaseboer E; Khoo BC
    Phys Med Biol; 2009 Oct; 54(20):6313-36. PubMed ID: 19809103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL.
    Crum LA
    J Urol; 1988 Dec; 140(6):1587-90. PubMed ID: 3057239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.