These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
53 related articles for article (PubMed ID: 969564)
1. The binding of trichlorofluoromethane and other haloalkanes to cytochrome P-450 under aerobic and anaerobic conditions. Cox PJ; King LJ; Parke DV Xenobiotica; 1976 Jun; 6(6):363-75. PubMed ID: 969564 [TBL] [Abstract][Full Text] [Related]
2. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase. Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic studies with purified components of the liver microsomal hydroxylation system: spectral intermediates in reaction of cytochrome P-450 with peroxy compounds. Coon MJ; Blake RC; Oprian DD; Ballou DP Acta Biol Med Ger; 1979; 38(2-3):449-58. PubMed ID: 42250 [TBL] [Abstract][Full Text] [Related]
4. Interaction of aromatic nitro compounds with reduced hepatic microsomal cytochrome P-450. Sternson LA; Gammans RE Drug Metab Dispos; 1975; 3(4):266-74. PubMed ID: 240656 [TBL] [Abstract][Full Text] [Related]
5. Microsomal oxidation of 2-dimethylamino-3-chloro-1,4-naphthoquinone. The possibility of substrate activation by cytochrome P-450. Rumyantseva GV; Sushkov DG; Weiner LM Xenobiotica; 1986 Feb; 16(2):167-75. PubMed ID: 3962336 [TBL] [Abstract][Full Text] [Related]
6. Interaction of cytochrome P-450 with hydrocarbons. Sípal Z; Anzenbacher P; Putz Z; Chlumský J; Krivanová O Acta Biol Med Ger; 1979; 38(2-3):483-94. PubMed ID: 517011 [TBL] [Abstract][Full Text] [Related]
7. A comparative study on the irreversible binding of labeled halothane trichlorofluoromethane, chloroform, and carbon tetrachloride to hepatic protein and lipids in vitro and in vivo. Uehleke H; Werner T Arch Toxicol; 1975 Dec; 34(4):289-308. PubMed ID: 3152 [TBL] [Abstract][Full Text] [Related]
8. Influence of two haloalkanes on the redox behavior of hepatic microsomal cytochrome b-5 and its possible relationship to stearate desaturase. Ivanetich KM; Manca V; Harrison GG Res Commun Chem Pathol Pharmacol; 1981 Dec; 34(3):473-84. PubMed ID: 6119752 [TBL] [Abstract][Full Text] [Related]
9. Studies on the substrate-induced spectral change of cytochrome P-450 in liver microsomes. Yoshida Y; Kumaoka H J Biochem; 1975 Sep; 78(3):55-68. PubMed ID: 1225914 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of reduction of purified liver microsomal cytochrome P-450 in the reconstituted enzyme system studied by stopped flow spectrophotometry. Vatsis KP; Oprian DD; Coon MJ Acta Biol Med Ger; 1979; 38(2-3):459-73. PubMed ID: 42251 [TBL] [Abstract][Full Text] [Related]
11. Spin state transitions of liver microsomal cytochrome P-450. Werringloer J; Kawano S; Estabrook RW Acta Biol Med Ger; 1979; 38(2-3):163-75. PubMed ID: 229673 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the oxidation of amine metabolites of nitrotoluenes by rat hepatic microsomes. N- and C-hydroxylation. Kedderis GL; Rickert DE Mol Pharmacol; 1985 Aug; 28(2):207-14. PubMed ID: 4022002 [TBL] [Abstract][Full Text] [Related]
13. Formation and binding of carbanions by cytochrome P-450 of liver microsomes. Ullrich V; Schnabel KH Drug Metab Dispos; 1973; 1(1):176-83. PubMed ID: 4149380 [No Abstract] [Full Text] [Related]
14. [Interaction of acrylates with the microsomal oxidation system in the rat liver]. Kotlovskiĭ IuV; Bekerev VE; Bachmanova GI; Ivanov VV Vopr Med Khim; 1985; 31(6):74-7. PubMed ID: 4090391 [TBL] [Abstract][Full Text] [Related]
15. Reduction of benzyl halides by liver microsomes. Formation of 478 NM-absorbing sigma-alkyl-ferric cytochrome P-450 complexes. Mansuy D; Fontecave M Biochem Pharmacol; 1983 Jun; 32(12):1871-9. PubMed ID: 6882464 [TBL] [Abstract][Full Text] [Related]
16. Comparison of spectral properties of 3-MC induced cytochrome P-448 from rabbits and rats. Friedrich J; Butschak G; Scheunig G; Ristau O; Rein H; Ruckpaul K; Smettan G Acta Biol Med Ger; 1979; 38(2-3):207-16. PubMed ID: 229677 [TBL] [Abstract][Full Text] [Related]
17. [Interaction of methylmethacrylate and acrylamide with the microsomal oxidation system of the rat liver]. Kotlovskiĭ IuV; Grishanova AIu; Ivanov VV Vopr Med Khim; 1984; 30(5):44-7. PubMed ID: 6442037 [TBL] [Abstract][Full Text] [Related]
18. Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds, and endogenous substrates. IX. The formation of a 455-nm metabolite-cytochrome P-450 complex. Kawalek JC; Levin W; Ryan D; Lu AY Drug Metab Dispos; 1976; 4(2):190-4. PubMed ID: 5265 [TBL] [Abstract][Full Text] [Related]
19. N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes. Cribb AE; Spielberg SP; Griffin GP Drug Metab Dispos; 1995 Mar; 23(3):406-14. PubMed ID: 7628308 [TBL] [Abstract][Full Text] [Related]
20. Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats. Jeffery EH; Mannering GJ Mol Pharmacol; 1983 May; 23(3):748-57. PubMed ID: 6865917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]