BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9696353)

  • 1. Acidic calcium pools in intraerythrocytic malaria parasites.
    Garcia CR; Ann SE; Tavares ES; Dluzewski AR; Mason WT; Paiva FB
    Eur J Cell Biol; 1998 Jun; 76(2):133-8. PubMed ID: 9696353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium homeostasis in intraerythrocytic malaria parasites.
    Garcia CR; Dluzewski AR; Catalani LH; Burting R; Hoyland J; Mason WT
    Eur J Cell Biol; 1996 Dec; 71(4):409-13. PubMed ID: 8980913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine-protease activity elicited by Ca2+ stimulus in Plasmodium.
    Farias SL; Gazarini ML; Melo RL; Hirata IY; Juliano MA; Juliano L; Garcia CR
    Mol Biochem Parasitol; 2005 May; 141(1):71-9. PubMed ID: 15811528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimalarial drugs disrupt ion homeostasis in malarial parasites.
    Gazarini ML; Sigolo CA; Markus RP; Thomas AP; Garcia CR
    Mem Inst Oswaldo Cruz; 2007 Jun; 102(3):329-34. PubMed ID: 17568938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inositol 1,4,5-trisphosphate induced Ca2+ release from chloroquine-sensitive and -insensitive intracellular stores in the intraerythrocytic stage of the malaria parasite P. chabaudi.
    Passos AP; Garcia CR
    Biochem Biophys Res Commun; 1998 Apr; 245(1):155-60. PubMed ID: 9535800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin and IP3-induced Ca2+ release from intracellular stores in the malaria parasite Plasmodium falciparum within infected red blood cells.
    Alves E; Bartlett PJ; Garcia CR; Thomas AP
    J Biol Chem; 2011 Feb; 286(7):5905-12. PubMed ID: 21149448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites.
    Marchesini N; Luo S; Rodrigues CO; Moreno SN; Docampo R
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):243-53. PubMed ID: 10727425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal transduction in red blood cells of the lizards Ameiva ameiva and Tupinambis merianae (Squamata, Teiidae).
    Beraldo FH; Sartorello R; Lanari RD; Garcia CR
    Cell Calcium; 2001 Jun; 29(6):439-45. PubMed ID: 11352509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N1-acetyl-N2-formyl-5-methoxykynuramine modulates the cell cycle of malaria parasites.
    Budu A; Peres R; Bueno VB; Catalani LH; Garcia CR
    J Pineal Res; 2007 Apr; 42(3):261-6. PubMed ID: 17349024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An acid-loading chloride transport pathway in the intraerythrocytic malaria parasite, Plasmodium falciparum.
    Henry RI; Cobbold SA; Allen RJ; Khan A; Hayward R; Lehane AM; Bray PG; Howitt SM; Biagini GA; Saliba KJ; Kirk K
    J Biol Chem; 2010 Jun; 285(24):18615-26. PubMed ID: 20332090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium regulation in the intraerythrocytic malaria parasite Plasmodium falciparum.
    Alleva LM; Kirk K
    Mol Biochem Parasitol; 2001 Oct; 117(2):121-8. PubMed ID: 11606221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium signaling in a low calcium environment: how the intracellular malaria parasite solves the problem.
    Gazarini ML; Thomas AP; Pozzan T; Garcia CR
    J Cell Biol; 2003 Apr; 161(1):103-10. PubMed ID: 12682086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Ca2+ transport activity associated with a non-mitochondrial calcium pool in the rodent malaria parasite P. chabaudi.
    Passos AP; Garcia CR
    Biochem Mol Biol Int; 1997 Aug; 42(5):919-25. PubMed ID: 9285059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The malaria parasite mitochondrion senses cytosolic Ca2+ fluctuations.
    Gazarini ML; Garcia CR
    Biochem Biophys Res Commun; 2004 Aug; 321(1):138-44. PubMed ID: 15358226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron tomography characterization of hemoglobin uptake in Plasmodium chabaudi reveals a stage-dependent mechanism for food vacuole morphogenesis.
    Wendt C; Rachid R; de Souza W; Miranda K
    J Struct Biol; 2016 May; 194(2):171-9. PubMed ID: 26882843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRET peptides reveal differential proteolytic activation in intraerythrocytic stages of the malaria parasites Plasmodium berghei and Plasmodium yoelii.
    Cruz LN; Alves E; Leal MT; Juliano MA; Rosenthal PJ; Juliano L; Garcia CR
    Int J Parasitol; 2011 Mar; 41(3-4):363-72. PubMed ID: 21168413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid extrusion from the intraerythrocytic malaria parasite is not via a Na(+)/H(+) exchanger.
    Spillman NJ; Allen RJ; Kirk K
    Mol Biochem Parasitol; 2008 Nov; 162(1):96-9. PubMed ID: 18675853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion metabolism in malaria-infected erythrocytes.
    Tanabe K
    Blood Cells; 1990; 16(2-3):437-49. PubMed ID: 2175223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinning disk confocal microscopy of live, intraerythrocytic malarial parasites. 2. Altered vacuolar volume regulation in drug resistant malaria.
    Gligorijevic B; Bennett T; McAllister R; Urbach JS; Roepe PD
    Biochemistry; 2006 Oct; 45(41):12411-23. PubMed ID: 17029397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of pH control in Plasmodium falciparum parasites subjected to oxidative stress.
    van Schalkwyk DA; Saliba KJ; Biagini GA; Bray PG; Kirk K
    PLoS One; 2013; 8(3):e58933. PubMed ID: 23536836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.