These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9696700)

  • 1. Discrete roles of hepatocytes and nonparenchymal cells in uridine catabolism as a component of its homeostasis.
    Liu MP; Beigelman L; Levy E; Handschumacher RE; Pizzorno G
    Am J Physiol; 1998 Jun; 274(6):G1018-23. PubMed ID: 9696700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. beta-alanine and alpha-fluoro-beta-alanine concentrative transport in rat hepatocytes is mediated by GABA transporter GAT-2.
    Liu M; Russell RL; Beigelman L; Handschumacher RE; Pizzorno G
    Am J Physiol; 1999 Jan; 276(1):G206-10. PubMed ID: 9886997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrimidine catabolism: individual characterization of the three sequential enzymes with a new assay.
    Traut TW; Loechel S
    Biochemistry; 1984 May; 23(11):2533-9. PubMed ID: 6433973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uridine catabolism in Kupffer cells, endothelial cells, and hepatocytes.
    Holstege A; Leser HG; Pausch J; Gerok W
    Eur J Biochem; 1985 May; 149(1):169-73. PubMed ID: 3922756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of uridine and thymidine on the degradation of 5-fluorouracil, uracil, and thymine by rat liver dihydropyrimidine dehydrogenase.
    Tuchman M; Ramnaraine ML; O'Dea RF
    Cancer Res; 1985 Nov; 45(11 Pt 1):5553-6. PubMed ID: 4053028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes of uracil catabolism in normal and neoplastic human tissues.
    Naguib FN; el Kouni MH; Cha S
    Cancer Res; 1985 Nov; 45(11 Pt 1):5405-12. PubMed ID: 3931905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenylselenenyl- and phenylthio-substituted pyrimidines as inhibitors of dihydrouracil dehydrogenase and uridine phosphorylase.
    Goudgaon NM; Naguib FN; el Kouni MH; Schinazi RF
    J Med Chem; 1993 Dec; 36(26):4250-4. PubMed ID: 8277507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effect of 6-azauracil on beta-alanine metabolism in rat.
    Tamaki N; Fujimoto S; Mizota C; Kaneko M; Kikugawa M
    J Nutr Sci Vitaminol (Tokyo); 1989 Oct; 35(5):451-61. PubMed ID: 2632679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of dihydropyrimidine dehydrogenase in the uridine nucleotide metabolism in the rat liver.
    Fujimoto S; Kikugawa M; Kaneko M; Tamaki N
    J Nutr Sci Vitaminol (Tokyo); 1992 Feb; 38(1):39-48. PubMed ID: 1629785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uridine phosphorylase from Novikoff rat hepatoma cells: purification, kinetic properties, and its role in uracil anabolism.
    McIvor RS; Wohlhueter RM; Plagemann PP
    J Cell Physiol; 1985 Mar; 122(3):397-404. PubMed ID: 2981897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of 5-benzylacyclouridine, a potent inhibitor of uridine phosphorylase, on the metabolism of circulating uridine by the isolated rat liver.
    Monks A; Ayers O; Cysyk RL
    Biochem Pharmacol; 1983 Jul; 32(13):2003-9. PubMed ID: 6870929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uridine catabolism by the isolated perfused rat liver.
    Holstege A; Gengenbacher HM; Jehle L; Gerok W
    J Hepatol; 1992 Mar; 14(2-3):335-41. PubMed ID: 1500698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative studies on the metabolism of new fluorinated pyrimidine drugs in the liver by in vivo 19F magnetic resonance spectroscopic observation.
    Harada M; Nishitani H; Koga K; Miura I; Kimura A
    Jpn J Cancer Res; 1993 Feb; 84(2):197-202. PubMed ID: 8463136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood-brain barrier efflux transport of pyrimidine nucleosides and nucleobases in the rat.
    Redzic ZB; Malatiali SA; Craik JD; Rakic ML; Isakovic AJ
    Neurochem Res; 2009 Mar; 34(3):566-73. PubMed ID: 18751895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of dihydrouracil in Rhodosporidium toruloides.
    Davis CH; Putnam MD; Thwaites WM
    J Bacteriol; 1984 Apr; 158(1):347-50. PubMed ID: 6425266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uridine phosphorylase from Acholeplasma laidlawii: purification and kinetic properties.
    McIvor RS; Wohlhueter RM; Plagemann PG
    J Bacteriol; 1983 Oct; 156(1):198-204. PubMed ID: 6619095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uridine and uracil transport in Escherichia coli and transport-deficient mutants.
    Roy-Burman S; Visser DW
    Biochim Biophys Acta; 1981 Aug; 646(2):309-19. PubMed ID: 7028116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of uridine homeostasis links liver pyrimidine metabolism to lipid accumulation.
    Le TT; Ziemba A; Urasaki Y; Hayes E; Brotman S; Pizzorno G
    J Lipid Res; 2013 Apr; 54(4):1044-57. PubMed ID: 23355744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and breakdown of uridine in ischemic hearts of rats and humans.
    Smoleński RT; de Jong JW; Janssen M; Lachno DR; Zydowo MM; Tavenier M; Huizer T; Yacoub MH
    J Mol Cell Cardiol; 1993 Jan; 25(1):67-74. PubMed ID: 8441182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of uridine and determination of liver ribonucleic acid synthesis in developing and adult mice.
    Engelbrecht C; Yngner T
    Int J Biochem; 1985; 17(4):495-501. PubMed ID: 2408937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.