BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 9696700)

  • 1. Discrete roles of hepatocytes and nonparenchymal cells in uridine catabolism as a component of its homeostasis.
    Liu MP; Beigelman L; Levy E; Handschumacher RE; Pizzorno G
    Am J Physiol; 1998 Jun; 274(6):G1018-23. PubMed ID: 9696700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. beta-alanine and alpha-fluoro-beta-alanine concentrative transport in rat hepatocytes is mediated by GABA transporter GAT-2.
    Liu M; Russell RL; Beigelman L; Handschumacher RE; Pizzorno G
    Am J Physiol; 1999 Jan; 276(1):G206-10. PubMed ID: 9886997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrimidine catabolism: individual characterization of the three sequential enzymes with a new assay.
    Traut TW; Loechel S
    Biochemistry; 1984 May; 23(11):2533-9. PubMed ID: 6433973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uridine catabolism in Kupffer cells, endothelial cells, and hepatocytes.
    Holstege A; Leser HG; Pausch J; Gerok W
    Eur J Biochem; 1985 May; 149(1):169-73. PubMed ID: 3922756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of uridine and thymidine on the degradation of 5-fluorouracil, uracil, and thymine by rat liver dihydropyrimidine dehydrogenase.
    Tuchman M; Ramnaraine ML; O'Dea RF
    Cancer Res; 1985 Nov; 45(11 Pt 1):5553-6. PubMed ID: 4053028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes of uracil catabolism in normal and neoplastic human tissues.
    Naguib FN; el Kouni MH; Cha S
    Cancer Res; 1985 Nov; 45(11 Pt 1):5405-12. PubMed ID: 3931905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenylselenenyl- and phenylthio-substituted pyrimidines as inhibitors of dihydrouracil dehydrogenase and uridine phosphorylase.
    Goudgaon NM; Naguib FN; el Kouni MH; Schinazi RF
    J Med Chem; 1993 Dec; 36(26):4250-4. PubMed ID: 8277507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effect of 6-azauracil on beta-alanine metabolism in rat.
    Tamaki N; Fujimoto S; Mizota C; Kaneko M; Kikugawa M
    J Nutr Sci Vitaminol (Tokyo); 1989 Oct; 35(5):451-61. PubMed ID: 2632679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of dihydropyrimidine dehydrogenase in the uridine nucleotide metabolism in the rat liver.
    Fujimoto S; Kikugawa M; Kaneko M; Tamaki N
    J Nutr Sci Vitaminol (Tokyo); 1992 Feb; 38(1):39-48. PubMed ID: 1629785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uridine phosphorylase from Novikoff rat hepatoma cells: purification, kinetic properties, and its role in uracil anabolism.
    McIvor RS; Wohlhueter RM; Plagemann PP
    J Cell Physiol; 1985 Mar; 122(3):397-404. PubMed ID: 2981897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of 5-benzylacyclouridine, a potent inhibitor of uridine phosphorylase, on the metabolism of circulating uridine by the isolated rat liver.
    Monks A; Ayers O; Cysyk RL
    Biochem Pharmacol; 1983 Jul; 32(13):2003-9. PubMed ID: 6870929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uridine catabolism by the isolated perfused rat liver.
    Holstege A; Gengenbacher HM; Jehle L; Gerok W
    J Hepatol; 1992 Mar; 14(2-3):335-41. PubMed ID: 1500698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative studies on the metabolism of new fluorinated pyrimidine drugs in the liver by in vivo 19F magnetic resonance spectroscopic observation.
    Harada M; Nishitani H; Koga K; Miura I; Kimura A
    Jpn J Cancer Res; 1993 Feb; 84(2):197-202. PubMed ID: 8463136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood-brain barrier efflux transport of pyrimidine nucleosides and nucleobases in the rat.
    Redzic ZB; Malatiali SA; Craik JD; Rakic ML; Isakovic AJ
    Neurochem Res; 2009 Mar; 34(3):566-73. PubMed ID: 18751895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of dihydrouracil in Rhodosporidium toruloides.
    Davis CH; Putnam MD; Thwaites WM
    J Bacteriol; 1984 Apr; 158(1):347-50. PubMed ID: 6425266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uridine phosphorylase from Acholeplasma laidlawii: purification and kinetic properties.
    McIvor RS; Wohlhueter RM; Plagemann PG
    J Bacteriol; 1983 Oct; 156(1):198-204. PubMed ID: 6619095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uridine and uracil transport in Escherichia coli and transport-deficient mutants.
    Roy-Burman S; Visser DW
    Biochim Biophys Acta; 1981 Aug; 646(2):309-19. PubMed ID: 7028116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of uridine homeostasis links liver pyrimidine metabolism to lipid accumulation.
    Le TT; Ziemba A; Urasaki Y; Hayes E; Brotman S; Pizzorno G
    J Lipid Res; 2013 Apr; 54(4):1044-57. PubMed ID: 23355744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and breakdown of uridine in ischemic hearts of rats and humans.
    Smoleński RT; de Jong JW; Janssen M; Lachno DR; Zydowo MM; Tavenier M; Huizer T; Yacoub MH
    J Mol Cell Cardiol; 1993 Jan; 25(1):67-74. PubMed ID: 8441182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of uridine and determination of liver ribonucleic acid synthesis in developing and adult mice.
    Engelbrecht C; Yngner T
    Int J Biochem; 1985; 17(4):495-501. PubMed ID: 2408937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.