BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 9696835)

  • 21. De novo synthesis of minus strand RNA by the rotavirus RNA polymerase in a cell-free system involves a novel mechanism of initiation.
    Chen D; Patton JT
    RNA; 2000 Oct; 6(10):1455-67. PubMed ID: 11073221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Template recognition and formation of initiation complexes by the replicase of a segmented double-stranded RNA virus.
    Tortorici MA; Broering TJ; Nibert ML; Patton JT
    J Biol Chem; 2003 Aug; 278(35):32673-82. PubMed ID: 12788926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence requirements for viral RNA replication and VPg uridylylation directed by the internal cis-acting replication element (cre) of human rhinovirus type 14.
    Yang Y; Rijnbrand R; McKnight KL; Wimmer E; Paul A; Martin A; Lemon SM
    J Virol; 2002 Aug; 76(15):7485-94. PubMed ID: 12097561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differentiation between minus- and plus-strand synthesis: polymerase activity of dsRNA bacteriophage phi 6 in an in vitro packaging and replication system.
    van Dijk AA; Frilander M; Bamford DH
    Virology; 1995 Aug; 211(1):320-3. PubMed ID: 7645229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The large genome segment of dsRNA bacteriophage phi6 is the key regulator in the in vitro minus and plus strand synthesis.
    Frilander M; Poranen M; Bamford DH
    RNA; 1995 Jul; 1(5):510-8. PubMed ID: 7489512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the kinetics of transcription and replication of the rotavirus genome by RNA interference.
    Ayala-Breton C; Arias M; Espinosa R; Romero P; Arias CF; López S
    J Virol; 2009 Sep; 83(17):8819-31. PubMed ID: 19553303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assortment and packaging of the segmented rotavirus genome.
    McDonald SM; Patton JT
    Trends Microbiol; 2011 Mar; 19(3):136-44. PubMed ID: 21195621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Template role of double-stranded RNA in tombusvirus replication.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2014 May; 88(10):5638-51. PubMed ID: 24600009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rotavirus VP2 core shell regions critical for viral polymerase activation.
    McDonald SM; Patton JT
    J Virol; 2011 Apr; 85(7):3095-105. PubMed ID: 21248043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of neomycin B on rotavirus plus- and minus-strand RNA synthesis.
    Manchego A; Spencer E
    Arch Virol; 2003 Jun; 148(6):1071-84. PubMed ID: 12756615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA synthesis in a cage--structural studies of reovirus polymerase lambda3.
    Tao Y; Farsetta DL; Nibert ML; Harrison SC
    Cell; 2002 Nov; 111(5):733-45. PubMed ID: 12464184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg.
    Paul AV; Rieder E; Kim DW; van Boom JH; Wimmer E
    J Virol; 2000 Nov; 74(22):10359-70. PubMed ID: 11044080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of Japanese encephalitis virus replication by peptide nucleic acids targeting cis-acting elements on the plus- and minus-strands of viral RNA.
    Yoo JS; Kim CM; Kim JH; Kim JY; Oh JW
    Antiviral Res; 2009 Jun; 82(3):122-33. PubMed ID: 19428603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rotavirus RNA polymerases resolve into two phylogenetically distinct classes that differ in their mechanism of template recognition.
    Ogden KM; Johne R; Patton JT
    Virology; 2012 Sep 15-30; 431(1-2):50-7. PubMed ID: 22687427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication.
    McKnight KL; Lemon SM
    RNA; 1998 Dec; 4(12):1569-84. PubMed ID: 9848654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The 5'-terminal region of the Aichi virus genome encodes cis-acting replication elements required for positive- and negative-strand RNA synthesis.
    Nagashima S; Sasaki J; Taniguchi K
    J Virol; 2005 Jun; 79(11):6918-31. PubMed ID: 15890931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of simian rotavirus SA11 double-stranded RNA in a cell-free system.
    Patton JT
    Virus Res; 1986 Dec; 6(3):217-33. PubMed ID: 2437720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physicochemical analysis of rotavirus segment 11 supports a 'modified panhandle' structure and not the predicted alternative tRNA-like structure (TRLS).
    Biswas S; Li W; Manktelow E; Lever J; Easton LE; Lukavsky PJ; Desselberger U; Lever AM
    Arch Virol; 2014 Feb; 159(2):235-48. PubMed ID: 23942952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rotavirus VP1 alone specifically binds to the 3' end of viral mRNA, but the interaction is not sufficient to initiate minus-strand synthesis.
    Patton JT
    J Virol; 1996 Nov; 70(11):7940-7. PubMed ID: 8892917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1.
    Lu X; McDonald SM; Tortorici MA; Tao YJ; Vasquez-Del Carpio R; Nibert ML; Patton JT; Harrison SC
    Structure; 2008 Nov; 16(11):1678-88. PubMed ID: 19000820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.