These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9697059)

  • 1. Red cell membrane damage.
    Kuypers FA
    J Heart Valve Dis; 1998 Jul; 7(4):387-95. PubMed ID: 9697059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prosthesis-induced hemolysis: mechanisms and quantification of shear stress.
    Ellis JT; Wick TM; Yoganathan AP
    J Heart Valve Dis; 1998 Jul; 7(4):376-86. PubMed ID: 9697058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prosthetic heart valves' mechanical loading of red blood cells in patients with hereditary membrane defects.
    Grigioni M; Caprari P; Tarzia A; D'Avenio G
    J Biomech; 2005 Aug; 38(8):1557-65. PubMed ID: 15958211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leakage flow at mechanical heart valve prostheses: improved washout or increased blood damage?
    Steegers A; Paul R; Reul H; Rau G
    J Heart Valve Dis; 1999 May; 8(3):312-23. PubMed ID: 10399668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformability of red blood cells and its relation to blood trauma in rotary blood pumps.
    Watanabe N; Sakota D; Ohuchi K; Takatani S
    Artif Organs; 2007 May; 31(5):352-8. PubMed ID: 17470204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythrocytes dynamic viscoelasticity in beta-thalassaemia minor.
    Pérez SM; Riquelme B; Acosta I; Valverde J; Milani A
    Clin Hemorheol Microcirc; 2006; 35(1-2):311-6. PubMed ID: 16899950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced membrane sialic acid contents of the erythrocytes after heart valve replacement with prosthetic devices.
    Ricci G; Martinelli L; Viganò M; Strozzi C
    Biomed Pharmacother; 1986; 40(1):25-7. PubMed ID: 3708116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.
    Quinlan NJ; Dooley PN
    Ann Biomed Eng; 2007 Aug; 35(8):1347-56. PubMed ID: 17458700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of hemolytic potential with the On-X(R) prosthetic heart valve.
    Birnbaum D; Laczkovics A; Heidt M; Oelert H; Laufer G; Greve H; Pomar JL; Mohr F; Haverich A; Regensburger D
    J Heart Valve Dis; 2000 Jan; 9(1):142-5. PubMed ID: 10678387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strain-based flow-induced hemolysis prediction model calibrated by in vitro erythrocyte deformation measurements.
    Chen Y; Sharp MK
    Artif Organs; 2011 Feb; 35(2):145-56. PubMed ID: 21091515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principal stress analysis in LDA measurement of the flow field downstream of 19-mm Sorin Bicarbon heart valve.
    Barbaro V; Grigioni M; Daniele C; D'Avenio G
    Technol Health Care; 1998 Nov; 6(4):259-70. PubMed ID: 9924953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain hardening of red blood cells by accumulated cyclic supraphysiological stress.
    Lee SS; Antaki JF; Kameneva MV; Dobbe JG; Hardeman MR; Ahn KH; Lee SJ
    Artif Organs; 2007 Jan; 31(1):80-6. PubMed ID: 17209965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage.
    Manning KB; Herbertson LH; Fontaine AA; Deutsch S
    J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red blood cell deformability and aggregation behaviour in different animal species.
    Plasenzotti R; Stoiber B; Posch M; Windberger U
    Clin Hemorheol Microcirc; 2004; 31(2):105-11. PubMed ID: 15310945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prehemolytic erythrocyte deformability changes caused by trichothecene T-2 toxin: an ektacytometer study.
    Gyongyossy-Issa MI; Card RT; Fergusson DJ; Khachatourians GG
    Blood Cells; 1986; 11(3):393-407. PubMed ID: 3742057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser diffractometry technique: clinical applications to vascular pathologies.
    Riquelme B; Foresto P; D'Arrigo M; Filippini F; Valverde J
    Clin Hemorheol Microcirc; 2006; 35(1-2):277-81. PubMed ID: 16899943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cell membrane lipid peroxidation and resistance to erythropoietin therapy in hemodialysis patients.
    Gallucci MT; Lubrano R; Meloni C; Morosetti M; Manca di Villahermosa S; Scoppi P; Palombo G; Castello MA; Casciani CU
    Clin Nephrol; 1999 Oct; 52(4):239-45. PubMed ID: 10543326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodimensional estimation of maximum Reynolds shear stress in the downstream flow field of bileaflet valves.
    Grigioni M; Daniele C; D'Avenio G; Barbaro V
    J Heart Valve Dis; 2002 May; 11(3):392-401. PubMed ID: 12056734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two methods in erythrocyte microrheology determination using glutaraldehyde-treated cells.
    Mirossay L; Mojzis J; Jandoseková M; Lukacín S; Nicák A
    Clin Hemorheol Microcirc; 1997; 17(3):187-92. PubMed ID: 9356782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hemolysis kinetics of psoriatic red blood cells.
    Górnicki A
    Blood Cells Mol Dis; 2008; 41(2):154-7. PubMed ID: 18511312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.