These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9697200)

  • 1. Linear programming based approach to the derivation of a contact potential for protein threading.
    Akutsu T; Tashimo H
    Pac Symp Biocomput; 1998; ():413-24. PubMed ID: 9697200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein threading by linear programming.
    Xu J; Li M; Lin G; Kim D; Xu Y
    Pac Symp Biocomput; 2003; ():264-75. PubMed ID: 12603034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of RAPTOR's linear programming approach in CAFASP3.
    Xu J; Li M
    Proteins; 2003; 53 Suppl 6():579-84. PubMed ID: 14579349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein fold recognition by prediction-based threading.
    Rost B; Schneider R; Sander C
    J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generalized threading model using integer programming that allows for secondary structure element deletion.
    Ellrott K; Guo JT; Olman V; Xu Y
    Genome Inform; 2006; 17(2):248-58. PubMed ID: 17503397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filtered neighbors threading.
    Bienkowska JR; Rogers RG; Smith TF
    Proteins; 1999 Nov; 37(3):346-59. PubMed ID: 10591096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Derivation of protein-specific pair potentials based on weak sequence fragment similarity.
    Skolnick J; Kolinski A; Ortiz A
    Proteins; 2000 Jan; 38(1):3-16. PubMed ID: 10651034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global optimum protein threading with gapped alignment and empirical pair score functions.
    Lathrop RH; Smith TF
    J Mol Biol; 1996 Feb; 255(4):641-65. PubMed ID: 8568903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of a novel and fast information-theoretic method to the discovery of higher-order correlations in protein databases.
    Steeg EW; Pham H
    Pac Symp Biocomput; 1998; ():573-84. PubMed ID: 9697213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining linear segments in protein structure.
    Taylor WR
    J Mol Biol; 2001 Jul; 310(5):1135-50. PubMed ID: 11502001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From sequence to structure to literature: the protocol approach to bioinformation.
    Wu OP; Seow KT; Wong L; Chung SY; Subbiah S
    Pac Symp Biocomput; 1998; ():747-58. PubMed ID: 9697227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The native sequence determines sidechain packing in a protein, but does optimal sidechain packing determine the native sequence?
    Koehl P; Delarue M
    Pac Symp Biocomput; 1997; ():198-209. PubMed ID: 9390292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Docking of protein molecular surfaces with evolutionary trace analysis.
    Kanamori E; Murakami Y; Tsuchiya Y; Standley DM; Nakamura H; Kinoshita K
    Proteins; 2007 Dec; 69(4):832-8. PubMed ID: 17803239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to protein fold recognition based on Delaunay tessellation of protein structure.
    Zheng W; Cho SJ; Vaisman II; Tropsha A
    Pac Symp Biocomput; 1997; ():486-97. PubMed ID: 9390317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAPTOR: optimal protein threading by linear programming.
    Xu J; Li M; Kim D; Xu Y
    J Bioinform Comput Biol; 2003 Apr; 1(1):95-117. PubMed ID: 15290783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of threading potentials and sequence profiles improves fold recognition.
    Panchenko AR; Marchler-Bauer A; Bryant SH
    J Mol Biol; 2000 Mar; 296(5):1319-31. PubMed ID: 10698636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A path planning approach for computing large-amplitude motions of flexible molecules.
    Cortés J; Siméon T; Ruiz de Angulo V; Guieysse D; Remaud-Siméon M; Tran V
    Bioinformatics; 2005 Jun; 21 Suppl 1():i116-25. PubMed ID: 15961448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins.
    Ortiz AR; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1998; ():377-88. PubMed ID: 9697197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.